# Chapter 13 Viruses, Viroids, and Prions

Biology 1009
Microbiology
Johnson-Summer 2003

#### Viruses

- Virology-study of viruses
- Characteristics:
  - acellular
  - obligate intracellular parasites
  - no ribosomes or means of protein synthesis
  - no ATP generating system
  - NOT ALIVE!

### Typical Viruses

- Two parts:
  - 1) Nucleic acid
    - either DNA or RNA (never both) 2)
  - 2) Capsid (protein coat)
    - Some capsids surrounded by envelopes

#### Viral Size

\*20-14000 nm

\*Need electron
microscope
to view



### Host Range

- Variety of host cells that a virus can infect
- Specific viruses often have narrow host range
- Some viruses only infect:
  - plants
  - invertebrates
  - protozoans
  - fungi
  - bacteria

#### Host/Virus Interaction

- Host range is determined by the viruses ability to interact with host cell
- Binding sites on viral capsid or envelope combine with <u>receptor</u> sites on host cell membrane

#### Viral Structure

Nucleic acid-DNA or RNA

- Capsid (coat protein)
  - Function:
  - Subunits:
  - Some have envelopes
    - made of lipids, proteins, and carbs
    - contain spikes-binding sites that help attach viruses to host/aid in viral ID





(a) An enveloped helical virus

Copyright @ 2001 Benjamin Cummings, an imprint of Addison Wesley Longman, Inc.



(a) A helical virus

Copyright @ 2001 Benjamin Cummings, an imprint of Addison Wesley Longman, Inc.



(a) A T-even bacteriophage

Copyright © 2001 Benjamin Cummings, an imprint of Addison Wesley Longman, Inc.

#### Viral Classification

- Based on one of the following:
  - nucleic acid
  - morphology
  - strategy of replication

# Isolation and Cultivation of Viruses

 Viruses must be grown in living cultures

- Bacteriophages:
  - easiest viruses to grow in the lab

# Growing Bacteriophages

- Prepare a spread plate (lawn) of bacteria
- Add bacteriophages
- As virus replicates, bacteria in area destroyed, leaving a clear zone known as

### Growing Animal Viruses

- Three methods:
  - Living animals
  - Chicken embryos
  - Cell culture
    - Primary cell lines
    - Diploid cell lines
    - Continuous cell lines

#### Viroids

#### Viroids:

- infectious pieces of naked RNA
- cause plant diseases
- 300-400 nucleotides long
- closed, folded 3 D shape

#### Prions

- Infectious proteins
- 1st discovered in the 1980's
- Diseases:
  - Mad cow
  - Creutzfeldt-Jakob
  - Chronic wasting
    - holes form in brain tissue

### Viral Replication

- One virion may enter host and produce 1000's of viruses
- Viruses lack necessary enzymes for ATP/protein synthesis
- Utilizes host metabolic machinery

# Replication of Bacteriophages

- Two mechanisms:
  - Lytic cycle

Lysogenic cycle

### Lytic Cycle

#### Five steps:

- 1) Attachment: binding sites must match receptor sites on host bacterial cell
- 2) Penetration: viral DNA is injected into bacterial cell
- 3) Biosynthesis: virus uses host cells enzymes and machinery
  - \*genome replication
  - \*transcription
  - \*translation

#### Bacteriophage Replication Lytic Cycle



# Lytic Cycle (continued)

4) Maturation: viral particles are assembled

5) Release: lysis occurs

#### Bacteriophage Replication Lytic Cycle



# Lysogenic Cycle

- 1) Attachment
- 2) Penetration
- 3) Integration: viral genome integrated into host cell genome
  - \*virus is latent
  - \*prophage

# Lysogenic Cycle (continued)

- 4) Biosynthesis: viral genome activated
  - \*genome replication
  - \*transcription
  - \*translation
- 5) Assembly
- 6) Release: lysis

### Lysogenic Convergence

- Results when a bacterial cell infected by a virus that has entered the lysogenic cycle
  - Examples:
    - Corynebacterium diptheria
    - Clostridium botulinum
    - Streptococcus pyogenes (may cause scarlet fever if lysogenic convergence occurs

## Lytic vs Lysogenic Cycle



### Animal Virus Replication

- Attachment: binding sites must match receptor sites on host cell
- 2) Penetration: endocytosis occurs and entire virus enters cell
- 3) Uncoating: separation of the viral genome from the capsid

# Animal Virus Replication (continued)

- 4) Biosynthesis
  - \*genome replication
  - \*transcription
  - \*translation
- 5) Maturation: virus particles assembled
- 6) Release: lysis

# Enveloped Virus Replication

- 1) Attachment
- 2) Penetration
- 3) Uncoating
- 4) Biosynthesis
- 5) Maturation: assembly
- 6) Release: budding

#### Retro Viruses

- Unique
- 1975
  - RNA----> DNA----> protein
  - utilizes reverse transcriptase
  - Normal virus
    - DNA---->mRNA----->protein
    - Central Dogma of Molecular Genetics

#### Retro Viruses

- Include many cancer causing viruses
- HIV
  - Human Immunodeficiency Virus
    - causes AIDS
      - Acquired Immunodeficiency Syndrome

#### HIV

- Leads to AIDS
  - results in immune system failure
  - death usually results from opportunistic infection (pneumonia)
  - HIV-discovered in 1984

#### HIV Structure

- Retro virus
- RNA nucleic acid (two strands)
- envelope (gp 120 binding sites)
- reverse transcriptase

# HIV Infection (cellular level)

- 1) Attachment:
  - \*HIV gp 120 binding sites must match CD4 receptor sites
- CD4 receptor sites
  - a) macrophages
  - b) CNS cells
  - c) T4 helper cells (CD4 cells)

# HIV Infection (continued)

- Penetration: viral membrane fuses with host cell membrane
- 3) Uncoating: capsid removed and viral genome exposed
- 4) Integration: viral genome enters host Two possibilities:
  - a) nothing-virus remains latent
  - b) HIV genome expressed or "turned on"

### HIV infection (continued)

- If HIV genome turned on--->
  - death usually results within 2 yrs
  - What causes HIV genome to be turned on?
    - stress
    - alcohol/drug abuse
    - nutrition
    - exercise

### Now that HIV genome in turned on...

- 5) Biosynthesis:
  - \*genome replication
  - \*transcription
  - \*translation
- 6) Maturation: viral particles put together
- 7) Release: by budding

### Methods of HIV Transmission

- HIV transmitted by exposure to infected body fluids
  - Four body fluids
    - \_\_\_\_\_
    - •
    - \_\_\_\_\_
    - \_\_\_\_\_

# Ways in which infected fluids can be transferred from one person to another?

- High risk sexual contact
- Contaminated needles
- Blood to blood contact
- Mother to child

### The Immune System and HIV

- Cellular Response
  - cells phagocytize microorganisms
- Humoral Response
  - antibodies destroy or inactive microorganisms

#### Clinical Stages of HIV Infection

- 1) Acute Infection
  - \*Initial infection of HIV (exposure to infected body fluids)
  - \*Viremia:

- \*May last for a couple of weeks
- \*Normal CD4 count\_\_\_\_\_

## Clinical Stages of HIV (continued)

- 2) Asymptomatic Disease
  - \*CD4 count now less than\_\_\_\_\_
  - \*Virus latent inside CD4 cells
  - \*Average latency=
  - \*No signs/symtoms of illness
  - \*HIV positive-antibodies detected in blood

## Clinical Stages of HIV (continued)

- 3) Symptomatic Disease
  - \*CD4 cell count\_\_\_\_\_
  - \*viral genome turned on
  - \*symptoms appear: chronic fatigue, fever, diarrhea, weight loss
  - \*Susceptible to infections: bacterial pneumonia, meningitis, TB, yeast infections

### HIV Stages of Infection(continued)

- 4) Advanced Disease (AIDS) CD4 cell count
  - \*Severe opportunistic infections
  - -Pneumocystic carini pneumonia
  - -Kaposi's sarcoma (cancer)
  - -Cryptosporidiosis (GI tract)
  - -Toxoplasmosis (brain)
  - -other bacterial, fungal, viral infections

#### Testing for HIV

- ELISA-enzyme linked immunosorbant assay
  - tests for HIV antibodies
  - after two positives, test for viral antigens completed
- Western blot
  - tests for HIV viral antigens

#### HIV Treatment

- NO CURE
- AZT (azidothymidine)
  - inhibits reverse transcriptase

- AIDS cocktail
  - AZT, 3TC, and a protease inhibitor

#### HIV Vaccine

- NONE AVAILABLE
- HIV mutates too quickly
- reverse transcriptase forms at least 1 mutation each time it is used
- 1 million variants during asymptomatic stage
- 100 million variants during AIDS