
Malware: Malicious
Code

UIC 594/Kent Law:
Computer and Network Privacy and Security: Ethical,

Legal, and Technical Considerations

© 2007, 2008 Robert H. Sloan

www.arztol.com

Malicious code: Viruses

• Most famous type of malicious code

• Malware Program that seeks out a
particular program (most often part of MS
Office) and embeds a copy of itself inside
the program

• Infected program is called host; when host
runs virus program attempts to duplicate
itself and do other things without

Malicious Software

• Satan vs. Murphy

• In 2008, very likely to arrive via network,
but does its work on one (your!) computer

• Does and does not violate access control:

• It’s got your permissions!

• What happens when you install new
program?

Taxonomy

• Malicious code, malware, rogue program:

• Virus: Can replicate itself (typically via
copied program and/or data) and pass on
malicious code to other non-malicious
programs by modifying them

• Trojan horse: Contains unexpected
additional usually malicious effects

Taxonomy continued

• Logic bomb: Malware that starts doing
its thing only when some condition is met

• Time bomb: Condition is a time

• Trapdoor or backdoor: built-in
surreptitious “extra” way to access. (E.g.,
extra unlisted super-user account with
name maintenance & password 99999999.)

Viruses spreading
across computers

• Requires host to get to uninfected
computer.

• Either user sends it (e.g., Word document
via email or memory stick) or it has
infected program use, e.g., Microsoft
Outlook.

• Today majority worms and/or involve MS
Office, Outlook, and/or Internet Explorer

Life cycle

1. Infection mechanism/vector

2. Trigger

3. Payload—Do whatever it does besides
spreading

Infection mechanisms
today

• Email (92% of attacks)

• Peer-to-peer file sharing (14% of attacks)

• Remote exploitation of system/software
vulnerability (13% of attacks)

Virus: Basic idea

• Simplest case are some
instructions (lines of
computer code) that
insert themselves at the
beginning of a program.

• User runs that program;
doesn’t even know virus
code is running; control
flows on to intended
program.

Some
 program Some

 program

Virus
code

Virus theory

• is interesting but not terribly relevant

• Written up by Cohen in mid 1980s,
though viruses existed earlier

• involves self-modifying code

• can prove that there exists virus that will
defeat any particular anti-virus software

Document (macro)
viruses

• # 1 form mid and late 1990s, still popular
today

• Instructions in formatted document,
especially MS Word

• Macro—shortcut “hotkey” programmed in,
e.g., Basic

• Cross platform (but payload usually is not)

Virus prevention

• Run good anti-virus software that is
regularly automatically updated.

• Or use Mac OS X or Linux.

• Very few viruses “in the wild” for Linux;
still none for Mac OS X (though first
worm).

Worms

• Like a virus in terms of having replication
mechanism and payload, etc.

• Distinct because it’s stand-alone; no host

• Most famous was 1988 Robert Morris
Internet Worm—shut down Internet for
the day.

• Intended only to spread!

There is an OS X
worm in the wild

• Leap.A; discovered February 2006

• Targets OS X version 10.4 and spreads via
Apple’s IM program iChat

• Known # of sites infected worldwide, as of
Feb. 2007, according to Symantec: 1–2

Hot new thing: XSS
• Newest member of virus/worm family is

cross-site scripting (XSS) virus/worm.

• Uses XSS scripting vulnerabilities to
propagate

• Roughly, web site uses user-provided data
to generate a page (e.g., Google search
result page) without checking that the
user-provided data was “okay.”

• Most notable attacks were on MySpace and

Famous Malware:
Morris Worm

• Nov. 3, 1988, I got a day off from grad
school….

• Robert T. Morris, Jr., then Cornell CS Grad
Student, created and released Internet
Worm

• Convicted in 1990 of violating 1986
Computer Fraud and Abuse Act, fined
$10,000, 400 h0urs of community service,

Morris Worm
• Exploited 3 long known, well known flaws

in Berkeley Unix v. 4 systems:

1. Passwords: people pick bad passwords
(coffee, aaa) and encrypted password
file world readable

2. Bug in UNIX finger

3. Trapdoor in UNIX sendmail

• No harmful payload, but resource exhaustion

Worm’s effects

• Shut down roughly 6,000 hosts on the 1988
Internet, typically for 1 day; some longer

• Robert T. Morris Sr. never became head of
the NSA.

• Internet academic community woke up to
the danger; CERT formed.

Example 2: Code Red

• First modern worm, July 2001

Exploited (known) security hole (buffer
overflow) in Microsoft Internet Information
Server on servers:

HELLO!
Welcome to
http://www.worm.com !
Hacked by Chinese!

http://www.worm.com
http://www.worm.com

Code Red (continued)

• Came in various versions to avoid fixed
signature that anti-virus software could
detect; more than a worm, installed back
doors, etc.

• First version spread 1st 19 days of month,
launched DDoS attack on
www.whitehouse.gov next 9 days of
month, took vacation 28th-1st.

http://www.whitehouse.gov
http://www.whitehouse.gov

Recent well-known
worms

• SQL Slammer (2003) Microsoft SQL server

• Mydoom (2004), mass-mailing email worm

• Warezov family

Virus + Worm
prevention

• If on Windows, run good anti-virus
software

• On any OS, apply security patches on a
very regular basis.

• Don’t have ridiculously weak passwords.
Many worms Morris-onward have brute-
force password crackers.

Trojan (horses)

• Software that user runs on purpose that
also does something malicious

• These days often an IM software, media
player, or add on to one of those two

Rootkits

• Recall top administrative user on Unix
systems = “root” (or “superuser”), so root
access = total administrator access.

• Rootkit = set of programs installed on a
system to maintain root access to it

• Typically changes the system to hide its
own existence

Hiding oneself

• When user issues command that would
show rootkit’s presence, e.g., listing files or
processes, rootkit intercepts call and
returns edited results to user

• E.g., file listing not listing rootkit file

• Normally also has parts to reestablish itself
if discovered and removed.

Rootkit installation
1. Get initial access (password cracking,

malware, esp. trojan, system vulnerability)

2. Attacker uploads rootkit to user machine
(plus optional extra virus, etc.)

3. Attacker runs rootkit’s installation script

4. Rootkit replaces files, system commands,
binaries, etc., to hide its presence

5. Rootkit payload activities

Rootkit revealers

• Idea: Program that displays files the usual
way, and that examines disk directly and
displays that way, and compares.

• Computer security expert Mark
Russinovich developed one, which he ran
on his own system.

• Surprised to find he had a rootkit on it.

Sony XCP

• Rootkit was installed when he had played a
music CD.

• Sony XCP (extended copy protection)!

• Rootkit that prevents user from copying
CD while allowing it to be played

• Installed its own music player that is
allowed to play the CD.

Sony DRM debacle

• Problem with music CDs is music is in
easily readable format.

• Sony tried 2 different essentially malware
DRM approaches; one, XCD, was a rootkit.

• Need to stop user from getting raw music
as soon as CD is put in PC.

• “Helpful” Windows feature: autorun

Installation: Windows
Autorun

• Windows runs program called autorun.exe
on CD insertion. (Suggest you disable it.)

• No user—nor, with music CD, expectation.

• This one installed rootkit program that
stopped music from being accessed by
anything but itself, a music player. (So no
iPod, etc.)

Story gets worse

• Program hid itself by hiding all program
names starting sys

• Thus making user vulnerable to any
malware with name beginning sys….

• Sony XCD phoned home to Sony with info
each time CD was inserted—Spyware!

• Uninstaller (of both programs) opened new

Sony XCD Analysis

• At least 500,000 installs; maybe 100s of
millions.

• Felten & Halderman analysis: DRM has
similar design specs to malware: get user to
install something that gives him no benefit,
and get him to leave it installed.

Additional Defense to
malware

• Limiting what can be on your network!

• This is one very big why University/
Company/Etc don’t want unauthorized
wireless access points, machines, etc., on
their networks.

Threat of monoculture

• Many (all?) famous massively successful
were aided by lack of software “genetic
diversity.” E.g.,

• Morris Worm–in 1988, machines on
Internet were all running Unix

• Code Red: Significant fraction of all
servers in 2001 were running Windows.

