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Chapter 1

Introduction

This textbook is meant to be a mathematically complete and rigorous in-
troduction to abstract linear algebra for undergraduates, possibly even first
year students, specializing in mathematics.

Linear algebra is one of the most applicable areas of mathematics. It is
used by the pure mathematician and by the mathematically trained scien-
tists of all disciplines. This book is directed more at the former audience
than the latter, but it is hoped that the writing is sufficiently clear with
enough detail so that the anyone reading the text can understand it. While
the book is written in an informal style and has many elementary examples,
the propositions and theorems are generally carefully proved, and the inter-
ested student will certainly be able to experience the theorem-proof style of
text.

We have throughout tried very hard to emphasize the fascinating and
important interplay between algebra and geometry. The exercises are also
intended to emphasize this aspect. Some of them are very easy, some are
medium hard and a few are quite challenging . The hope is that the student
will find them to be stimulating and a reason to think deeply about the
material.

The first two Chapters of the text cover standard beginning topics in
linear algebra: matrices, linear systems, Gaussian elimination, inverses of
matrices and the LDU decomposition. In this material, we manage to define
the notion of a matrix group and give several examples, such as the general
linear group, the orthogonal group and the group of n × n permutation
matrices. In Chapter 3, we define the notion of a field and construct the
prime fields Fp as examples that will be used later on. We then introduce
the notion of an abstract vector space over an arbitrary field and discuss

11
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some important speial cases, including Rn and Cn as inner product spaces.
The fourth Chapter is devoted to proving the fundamental theorems on

finite dimensional vector spaces. We also treat the properties of dimension.
We also prove the Hausdorff Intersection Theorem and use it to treat direct
sums. We next construct the quotient of a vector space by a subspace. Direct
sums and quotients are used later when we begin to study eigentheory in
earnest.

Chapter 5 is an introduction to linear coding theory. The basic results
about error correcting codes are proven, and we treat perfect codes in some
detail. As well as being a timely subject, the topic of linear coding theory
illustrates as well as anything I know of how powerful and useful the results
of elementary linear algebra really are.

In Chapter 6, we discuss linear transformations. We show how to asso-
ciate a matrix to a linear transformation (depending on a choice of bases)
and prove that two matrices representing a linear transformation from a
space to itself are similar. We also define the notion of an eigenpair and
what is meant by a semi-simple linear transformation.

The next topic we cover is the theory of determinants. We give a rigorous
definition and derivation of the basic properties of det, starting from the
classical definition of the determinant of a matrix as an alternating sum
(thereby avoiding the use of the Laplace expansion). A number of geometric
applications are also given.

Chapter 8 covers the essential results about eigen-theory. We study the
usual notions: the characteristic polynomial, eigenspaces and so on. Having
introduced direct sums, we are able to show that a linear transformation with
the same domain and target is semi-simple if and only if the dimensions of
its eigenspaces add up to the dimension of the domain. Furthermore, having
introduced quotients, we are able to show that every n× n matrix over the
complex numbers is similar to an upper triangular matrix; or, equivalently,
every linear transformation admits a flag basis. As a corollary, we show
that the geometric multiplicity of an eigenvalue is at most the algebraic
multiplicity, a result that is not easy to show from scratch. To concluse, we
state the Cayley-Hamilton Theorem and give a partial proof. The full proof
is given in Chapter 13.

Chapter 9 treats inner product spaces. For the most part, we concentrate
on real and complex n-space, Rn and Cn and treat some of the standard
topics such as least squares, projections, pseudo-inverses and orthonormal
bases. We discuss Graham-Schmidt orthogonalization and derive the basic
QR-factorization. In the last section, we show that the matrix group SO(3)
is exactly the set of all rotations of R3 (in the sense of Euler). We also
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compute the rotations of a cube and regular octahedron.
In Chapter 10, we classify the complex matrices that admit orthogonal

diagonalization: i.e. the normal matrices (those which commute with their
Hermitian transpose). The fundamental results, such as the Principle Axis
Theorem, concerning self adjoint operators on a finite dimensional vector
space, follow easily, but we also give a geometric treatment of the Principle
Axis Theorem because of the fundamental nature of this result.

Chapter 11 is devoted to applications, particularly of symmetric matri-
ces. We introduce quadratic forms, prove Sylvester’s Theorem and derive
the relationship between the signs of pivots and the number of positive
eigenvalues. We then consider some graph theory, and study the adjacency
matrix of a graph. Finally, we consider the QR-algorithm for approximating
eigenvalues and the power method, which is the QR-algorithm on the space
of complete flags.

In Chapter 13, we polish off the theory of linear transformations by
proving the most fundamental result about linear transformations, namely
the Jordan Decomposition Theorem. We then obtain the Cayley-Hamilton
Theorem, which is an easy consequence. Finally, we give a short discussion
of the Jordan Normal Form of a linear transformation or matrix, tying it in
with the notion of a flag basis introduced in Chapter 8.

I would like to thank Kai Behrend for several helpful observations. He
would also like to thank Jingyi Chen and Kevin Purbhoo for their valuable
suggestions and Peter Kiernan for telling him about the power method.
Finally, I would like to thank Ann Kostant for her generous advice and
encouragement.
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Chapter 2

Linear Equations and
Matrices

The purpose of this chapter is to learn about linear systems. We will restrict
our discussion for now to equations whose coefficients are real numbers.
In order to develop the algorithmic approach to linear systems known as
Gaussian reduction, we will introduce the notion of a matrix so that we can
approach any system via its coefficient matrix. This allows us to state a
set of rules called row operations to bring our equations into a normal form
called the reduced row echelon form of the system. The set of solutions may
then be expressed in terms of fundamental and particular solutions. Along
the way, we will develope the criterion for a system to have a unique solution.
After we have developed some further algebraic tools, which will come in
the next chapter, we’ll be able to considerably strengthen the techniques we
developed in this chapter.

2.1 Linear equations: the beginning of algebra

The subject of algebra arose from studying equations. For example, one
might want to find all the real numbers x such that x = x2 − 1. To solve,
we could rewrite our equation as x2−x−6 = 0 and then factor its left hand
side. This would tell us that (x− 3)(x+ 2) = 0, so we would conclude that
either x = 3 or x = −2 since either x − 3 or x + 2 has to be zero. Finding
the roots of a polynomial is a nonlinear problem, whereas the topic to be
studied here is the theory of linear equations.

The simplest linear equation is the equation ax = b. The letter x is the
variable, and a and b are fixed numbers. For example, consider 4x = 3. The

15
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solution is x = 3/4. In general, if a 6= 0, then x = b/a, and this solution
is unique. If a = 0 and b 6= 0, there is no solution, since the equation says
0 = b. And in the case where a and b are both 0, every real number x is
a solution. This points out a general property of linear equations. Either
there is a unique solution (i.e. exactly one), no solution or infinitely many
solutions.

More generally, if x1, x2, . . . xn are variables and a1, a2, . . . an and c are
fixed real numbers, then the equation

a1x1 + a2x2 + · · ·+ anxn = c

is said to be a linear equation. The ai are the coefficients, the xi the variables
and c is the constant. While in familiar situations, the coefficients are real
numbers, it will turn out that in other important settings, such as coding
theory, the coefficients might be elements of some general field. We will
study fields in the next chapter. For now, let us just say that in a field it is
possible to carry out division. The real numbers are a field, but the integers
are not (3/4 isn’t an integer).

Let’s take another example. Suppose you are planning to make a cake
using 10 ingredients, and you want the cake to have 2000 calories. Let ai
be the number of calories per gram of the ith ingredient. Presumably, each
ai is nonnegative, although in the future, foods with negative calories may
actually be available. Similarly, let xi be the number of grams of the ith
ingredient. Then a1x1 + a2x2 + · · ·+ a10x10 is the total number of calories
in the recipe. Since you want the total number of calories in your cake to be
exactly 2000, you consider the equation a1x1 + a2x2 + · · ·+ a10x10 = 2000.
The totality of possible solutions x1, x2, . . . , x10 for this equation is the set
of all possible recipes you can concoct.

The following more complicated example illustrates how linear equations
can be used in nonlinear problems. Let R denote the real numbers, and
suppose we want to know something about the set of common solutions of
the equations z = x2 + xy5 and z2 = x+ y4. These equations represent two
surfaces in real three space R3, so we’d expect the set of common solutions to
lie on a curve. Here it’s impossible to express the solutions in a closed form,
but we can study them locally using linear methods. For example, both
surfaces meet at (1, 1, 1), and they both have a tangent plane at (1, 1, 1).
The tangent line to the curve of intersection at (1, 1, 1) is the intersection
of these two tangent planes. This will give us a linear approximation to the
curve near (1, 1, 1).

Nonlinear systems such as in the above example are usually difficult to
solve; their theory involves highly sophisticated mathematics. On the other



17

hand, it turns out that systems of linear equations are handled quite simply
by elementary methods, and modern computers make it possible to solve
gigantic linear systems with fantastic speed.

A general linear system consisting of m equations in n unknowns will
look like:

a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a23x2 + · · ·+ a2nxn = b2

... (2.1)

am1x1 + am2x2 + · · ·+ amnxn = bm.

Notice how the coefficients aij are labelled. The first index gives its row
and the second index its column. The case where all the constants bi are
zero is called the homogeneous case. Otherwise, the system is said to be
nonhomogeneous

The main problem, of course, is to find a procedure or algorithm for
describing the solution set of a linear system. The principal procedure for
solving a linear system is called Gaussian reduction. We will take this up
below.
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2.2 Matrices

To simplify the cumbersome notation for a system used above, we will now
introduce the notion of a matrix.

Definition 2.1. A matrix is simply a rectangular array of real numbers.
An m× n matrix is an array having m rows and n columns, such as

A =


a11 a12 . . . a1n

a21 a23 . . . a2n
...

... · · ·
...

am1 am2 . . . amn

 . (2.2)

If m = n, we say A is square of degree n. The set of all m× n matrices
with real entries will be denoted by Rm×n.

2.2.1 Matrix Addition and Vectors

It turns out to be very useful to introduce addition and multiplication for
matrices. We will begin with sums.

Definition 2.2. The matrix sum (or simply the sum) A+B of two m× n
matrices A and B is defined to be the m×n matrix C such that cij = aij+bij
for all pairs of indices (i, j). The scalar multiple αA of A by a real number
α is the matrix obtained by multiplying each entry of A by α.

Example 2.1. Here are a couple of examples. Let

A =

1 0 0 2
0 1 0 3
0 0 1 5

 , and B =

1 2 3 0
0 0 3 1
1 2 3 0

 .

Then

A+B =

2 2 3 2
0 1 3 4
1 2 4 5


Doubling A gives

2A =

2 0 0 4
0 2 0 6
0 0 2 10

 .
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The m× n matrix all of whose entries are zero is called the zero matrix.
If O is the m× n zero matrix and A is any m× n matrix, then A+O = A.
Thus O is the additive identity for matrix addition. Now that the additive
identity for matrix addition is defined, we can observe that the matrix −A
is the additive inverse of A, in the sense that A+ (−A) = (−A) +A = O.

A column matrix is usually simply called a vector. The set of all n × 1
column matrices (or vectors) is denoted by Rn. Vectors with the same num-
ber of components are combined via the component-wise addition and scalar
multiplication defined above. We will use the notation (u1, u2, . . . , un)T to
express the column matrix 

u1

u2
...
un


in a more compact form. What the superscript T stands for will be clarified
later. Vectors will usually be written as bold faced letters. For example, x
will stand for

x =


x1

x2
...
xn

 .

If u1,u2, . . .um are vectors in Rn and if a1, a2, . . . , am are scalars, that is
elements of R, then the vector

a1u1 + a2u2 + · · ·+ amum

is called a linear combination of u1,u2, . . .um.

2.2.2 Some Examples

So far we have only considered matrices over the real numbers. After we
define fields in the next Chapter, we will be able to study matrices over ar-
bitrary fields, which will give us a much wider range of applications. Briefly,
a field is a set with the operations of addition and multiplication which
satisfies the basic algebraic properties of the integers. However, fields also
have division in the sense that every element of a field has a multiplicative
inverse. we will leave the precise meaning of this statement for the next
chapter.

The field with the smallest number of elements is the integers mod 2,
which is denoted by F2. This field consists of two elements 0 and 1 with
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addition being defined by 0 + 0 = 0, 0 + 1 = 1 + 0 = 1 and 1 + 1 = 0.
Multiplication is defined so that 1 is its usual self: 0× 1 = 0 and 1× 1 = 1.
except that 1+1 is defined to be 0: 1+1 = 0. F2 is very useful in computer
science since adding 1 represents a change of state (off to on, on to off),
while adding 0 represents status quo.

Matrices over F2 are themselves quite interesting. For example, since F2

has only two elements, there are precisely 2mn such matrices. Addition of
such matrices has an interesting property, as the following example shows.

Example 2.2. For example,(
1 0 1
0 1 1

)
+
(

1 1 1
1 1 1

)
=
(

0 1 0
1 0 0

)
,

and (
1 0 1
0 1 1

)
+
(

1 0 1
0 1 1

)
=
(

0 0 0
0 0 0

)
.

In the first sum, the parity of every element in the first matrix is reversed.
In the second, we see every matrix over F2 is its own additive inverse.

Example 2.3. Random Key Crypts. Suppose Rocky the flying squirrel
wants to send a message to his sidekick, Bullwinkle the moose, and he wants
to make sure that the notorious villains Boris and Natasha won’t be able to
learn what it says. Here is what the ever resourceful squirrel does. First he
assigns the number 1 to a, 2 to b and so forth up to 26 to z. He also assigns
0 to the space between two words. He then computes the binary expansion
of each integer between 1 and 26. Thus 1=1, 2=10, 3=11, 4=100, . . . ,
26=11010. He now converts his message into a sequence of five digit strings.
Note that 00000 represents a space. The result is his encoded message, which
is normally referred to as the plaintext. To make things more compact, he
arranges the plaintext into a matrix. For example, if there are 5 words,
hence 4 spaces, he could make a 3× 3 matrix of 5 digit strings of zeros and
ones.

Let’s denote the matrix containing the plaintext by P , and suppose P
is m × n. Now the fun starts. Rocky and Bullwinkle have a list of m × n
matrices of zeros and ones that only they know. The flying squirrel selects
one of these matrices, say number 47, and tells Bullwinkle. Let E be matrix
number 47. Cryptographers call E the key. Now he sends the ciphertext
encE(P ) = P+E to Bullwinkle. If only Rocky and Bullwinkle know E, then
the matrix P containing the plaintext is secure. Even if Boris and Natasha
succeed in learning the ciphertext P + E, they will still have to know E to



21

find out what P is. The trick is that the key E has to be sufficiently random
so that neither Boris nor Natasha can guess it. For example, if E is the all
ones matrix, then P isn’t very secure since Boris and Natasha will surely
try it. Notice that once Bullwinkle receives the ciphertext, all he has to do
is add the key E to recover the plaintext P since

encE(P ) + E = (P + E) + E = P + (E + E) = P +O = P.

This is something even a mathematically challenged moose can do.
The hero’s encryption scheme is extremely secure if the key E is suffi-

ciently random and only used once. (Such a crypt is called a one time pad.)
However, if he uses E to encrypt another plaintext message Q, and Boris
and Natasha pick up both encE(P ) = P + E and encE(Q) = Q + E, then
they can likely find out what both P and Q say. The reason for this is that

(P + E) + (Q+ E) = (P +Q) + (E + E) = P +Q+O = P +Q.

The point is that knowing P +Q may be enough for a good cryptographer
to deduce both P and Q. But, as a one time pad, the random key is quite
secure (in fact, apparently secure enough for communications on the hot line
between Washington and Moscow).

Example 2.4. (Scanners) We can also interpret matrices over F2 in an-
other natural way. Consider a black and white photograph as being a rect-
angular array consisting of many black and white dots. By giving the white
dots the value 0 and the black dots the value 1, the black and white photo is
therefore transformed into a matrix over F2. Now suppose we want to com-
pare two black and white photographs whose matrices A and B are both
m × n. It’s inefficient for a computer to scan the two matrices to see in
how many positions they agree. However, when A and BB are added, the
sum A + B has a 1 in in any component where A and B differ, and a 0
wherever they coincide. For example, the sum two identical photographs is
the zero matrix, and the sum of two complementary photographs is the all
ones matrix. An obvious measure of how similar the two matrices A and B
are is the number of non zero entries of A+B, i.e. Σ(aij + bij). This easily
tabulated number is known as the Hamming distance between A and B.

2.2.3 Matrix Product

We will introduce matrix multiplication in the next Chapter. To treat linear
systems, however, we need to define the product Ax of a m × n matrix A
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and a (column) vector x in Rn. Put
a11 a12 . . . a1n

a21 a23 . . . a2n
...

... · · ·
...

am1 am2 . . . amn



x1

x2
...
xn

 = (2.3)

=


a11x1 + a12x2 + · · ·+ a1nxn
a21x1 + a23x2 + · · ·+ a2nxn

...
am1x1 + am2x2 + · · ·+ amnxn

 .

¿From now on, one should think of the left hand side of the linear system
Ax = b as a product.

Let us point out a basic property of multiplication.
Proposition 2.1. The matrix product Ax is distributive. That is, for any
x and y in Rn and any A ∈ Rm×n, A(x + y) = Ax +Ay.

Proof. This is obvious from the distributive property of real numbers.
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2.3 Reduced Row Echelon Form and Row Opera-
tions

The purpose of this section is to define the two fundamental concepts in the
title, which will turn out to be the main tools for solving an arbitrary linear
system. Let us begin with the observation that a linear system Ax = b has
an associated pair of matrices as described in the next definition.

Definition 2.3. The coefficient matrix of the linear system Ax = b in (2.1)
is the m× n matrix A in (2.2). The augmented coefficient matrix of (2.1) is
the m× (n+ 1) matrix

(A|b) =


a11 a12 . . . a1n b1
a21 a23 . . . a2n b2
...

... · · ·
...

am1 am2 . . . amn bm

 . (2.4)

We will start by defining the notion of row echelon form.

Definition 2.4. A matrix A is said to be in row echelon form if

(i) the first non zero entry in every row is to the right of the first non zero
entry in all the rows above, and

(ii) every entry above a first non zero entry is zero.

The first non zero entry in a row is called its pivot or corner entry. A matrix
A in row echelon form is said to be in reduced row echelon form, or simply
reduced, if each corner entry is 1.

For a reason connected with matrix multiplication, the reduced n × n
matrix in reduced row echelon form with n corners is called the n×n identity
matrix. The identity matrix is denoted by In. For example,

I2 =
(

1 0
0 1

)
and I3 =

1 0 0
0 1 0
0 0 1

 .

Here are some more examples of reduced matrices:1 0 0 2
0 1 0 3
0 0 1 5

 ,

1 2 3 0 9
0 0 0 1 4
0 0 0 0 0

 ,

(
0 1 3 0 9
0 0 0 1 0

)
.



24

Notice that the last matrix in this example would be the coefficient matrix
of a system with variables x1, x2, . . . , x5 in which the variable x1 doesn’t
actually appear. The only variables that one needs to solve for are x2, . . . , x5.
As mentioned above, the n×n identity matrix In is reduced, as is the m×n
matrix of zeros.

We next define the three elementary row operations.

Definition 2.5. Let A be an arbitrary matrix. The three elementary row
operations on A are as follows:

(I) interchange two rows of A;

(II) multiply a row of A by a non zero scalar; and

(III) replace a row of A by itself plus a multiple of a different row.

We will call operations of type I row swaps. Type II operations are
called row dilations, and type III operations are called transvections. (We
will generally not use this term.)

Proposition 2.2. Every matrix A can be put into reduced row echelon
form by a (not unique) sequence of elementary row operations.

Before giving a proof, let us work an example.

Example 2.5. Consider the counting matrix

C =

1 2 3
4 5 6
7 8 9

 .

We can row reduce C as follows:

C
R2−4R1→

1 2 3
0 −3 −6
7 8 9

 R3−7R1→

1 2 3
0 −3 −6
0 −6 −12



R3−2R2→

1 2 3
0 −3 −6
0 0 0

 (−1/3)R2→

1 2 3
0 1 2
0 0 0

 R1−2R2→

1 0 −1
0 1 2
0 0 0

 .

Notice that we have indicated the row operations.
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Proof of Proposition 2.2. If a11 6= 0, we can make it 1 by the dilation which
divides the first row by a11. We can then use row operations of type III
to make all other entries in the first column zero. If a11 = 0, but the first
column has a non zero entry somewhere, swapping the first row with the row
containing this non zero entry puts a nonzero entry in the (1, 1) position.
Next, divide the new first row by the inverse of the (1, 1) entry, getting a
one in the (1, 1) position. We now have a corner entry in the (1, 1) position,
and so we can use operations of type III to make all the elements in the first
column below the (1, 1) entry 0. If the first column consists entirely of zeros,
we can proceed directly to the second column. To continue, we repeat the
above steps on the second column, except that the question is whether the
(2, 2) entry a′22 is zero or not. If a′22 6= 0 , we can make the (2, 2) entry 1 by
dividing the second row by a′22. After that, the (1, 2) entry can be made 0
by a type III operation. If a′22 = 0, we look for a nonzero entry below it, and
if there is one, a row swap will put it into the (2, 2) position. If every entry
below the (1, 2) position is zero, we can proceed directly to the third clumn.
Continuing in this manner, we will eventually obtain a reduced matrix.
Remark: Of course, the steps leading to a reduced form are not unique.
Nevertheless, the reduced form of A itself turns out to be unique, This isn’t
obvious, but it can be proven (see Propositions 3.18 and 5.15). We now
make an important definition assuming this.

Definition 2.6. The reduced form of an m×n matrix A is denoted by Ared.
The row rank, or simply, the rank of an m × n matrix A is the number of
non-zero rows in Ared.
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2.4 Solving Linear Systems via Gaussian Reduc-
tion

Gaussian reduction is an algorithmic procedure for finding the solution set of
a linear system. We will say that two linear systems are equivalent if their
solution sets are equal. The strategy in Gaussian reduction is to replace
the original system with a sequence of equivalent systems until the final
system is in reduced row echelon form. That is, its coefficient matrix is in
reduced row echelon form. The sequence of equivalent systems is produced
by applying row operations.

2.4.1 Row Operations and Equivalent Systems

Let A be an m × n matrix and consider the linear system Ax = b. The
augmented coefficient matrix of this system is (A|b). The first thing is to
point out the role of row operations. What happens when one performs an
elementary row operation on (A | b)? In fact, I claim that the new system
is equivalent to the original system.

For example, row swaps simply interchange two equations, so they clearly
leave the solution set unchanged. Similarly, multiplying the ith equation
by a non-zero constant a does likewise, since the original system can be
recaptured by multiplying the ith equation by a−1. The only question is
whether a row operation of type III changes the solutions. Suppose the ith
equation is replaced by itself plus a multiple k of the jth equation, where
i 6= j. Then any solution of the original system is still a solution of the new
system. But any solution of the new system is also a solution of the original
system since subtracting k times the jth equation from the ith equation of
the new system gives us back the original system. Therefore the systems
are equivalent.

To summarize this, we state

Proposition 2.3. Performing a sequence of row operations on the aug-
mented coefficient matrix of a linear system gives a new system which is
equivalent to the original system.

To reiterate, to solve a linear system by Gaussian reduction, the first
step is to put the augmented coefficient matrix in reduced row echelon form
via a sequence of row operations. The next step will be to find the solution
set.
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2.4.2 The Homogeneous Case

Solving a linear system Ax = b involves several steps. The first step is to
solve the associated homogeneous system.

Definition 2.7. A linear system Ax = b is said to be homogeneous if b = 0.
The solution set of a homogeneous linear system Ax = 0 is called the null
space of A. The null space of A is denoted throughout by N (A).

The efficient way to describe the solution set of a homogeneous linear
system to use vectors. Note first that since performing row operations on
(A|0) doesn’t alter the last column, we only need to use the coefficient matrix
A.

The following example shows how to write down the null space.

Example 2.6. Consider the homogeneous linear system

0x1 + x2 + 2x3 + 0x4 + 3x+ 5− x6 = 0
0x1 + 0x2 + 0x3 + x4 + 2x5 + 0x6 = 0.

Notice that the coefficient matrix A is already reduced. Indeed,

A =
(

0 1 2 0 3 −1
0 0 0 1 2 0

)
.

The procedure is to solve for the variables corresponding to the columns
with corners, which we call the corner variables. Since the corner variables
have nonzero coefficients, they can be expressed in terms of the remaining
variables, which are called the free variables. For A, the corner columns
are the second and fourth, so x2 and x4 are the corner variables, and the
variables x1, x3, x5 and x6 are the free variables. Solving for x2 and x4 gives

x2 = −2x3 − 3x5 + x6

x4 = −2x5

In this expression, the corner variables are dependent variables which are
functions of the free variables. Now let x = (x1, x2, x3, x4, x5, x6)T denote
an arbitrary vector in R6 in the solution set of the system, and let us call
x the general solution vector. Notice that we have expressed it as a column
vector. Replacing the corner variables by their expressions in terms of the
free variables gives a new expression for the general solution vector involving
only the free variables. Namely

x = (x1,−2x3 − 3x5 + x6, x3, − 2x5, x5, x6)T .
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The general solution vector now depends only on the free variables, and
there is a solution for any choice of these variables.

Using a little algebra, we can compute the vector coefficients of each one
of the free variables in x. These vectors are called the fundamental solutions.
In this example, the general solution vector x has the form

x = x1f1 + x3f2 + x4f3 + x5f4, (2.5)

where

f1 =



1
0
0
0
0
0

 , f2 =



0
0
−2
1
0
0

 , f3 =



0
−3
0
−2
1
0

 , and f4 =



0
−1
0
0
0
1

 .

The equation (2.5) tells us that every solution of Ax = 0 is a linear combi-
nation of the fundamental solutions f1, . . . , f4.

This example illustrates a trivial but useful fact.

Proposition 2.4. In an arbitrary homogeneous linear system with coeffi-
cient matrix A, every solution is a linear combination of the fundamental
solutions, and the number of fundamental solutions is the number of free
variables. Thus,

#corner variables + #free variables = #variables. (2.6)

Proof. The proof that every solution is a linear combination of the funda-
mental solutions goes exactly like the above example, so we will omit it.
Equation (2.6) is an application of the fact that every variable is either a
free variable or a corner variable, but not both.

We will eventually prove several refinements of this property which will
say considerably more about the structure of the solution set.

Let us point out something a bit unusual in Example 2.6. The variable
x1 never actually appears in the system, but it does give a free variable and
a corresponding fundamental solution (1, 0, 0, 0, 0, 0)T . Suppose instead of
A the coefficient matrix is

B =
(

1 2 0 3 −1
0 0 1 2 0

)
.
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Now (1, 0, 0, 0, 0, 0)T is no longer a fundamental solution. In fact the solution
set is now a subset of R5. The corner variables are x1 and x3, and there are
now only three fundamental solutions corresponding to the free variables
x2, x4, and x5.

Even though identity (2.6) is completely obvious, it gives some very
useful information. Here is a typical application.

Example 2.7. Consider a linear system with 25 variables and assume there
are 10 free variables. Then there are 15 corner variables, so the system has
to have at least 15 equations. That is, there have to be at least 15 linear
constraints on the 25 variables.

We can also use (2.6) to say when the homogeneous system Ax = 0 has
a unique solution (that is, exactly one solution). Note that 0 is always a
solution: the trivial solution. Hence if the solution is to be unique, then
the only possibility is that N (A) = {0}. But this happens exactly when
there are no free variables, since if there is a free variable there have to be
non trivial solutions. Thus a homogeneous system has a unique solution
if and only if every variable is a corner variable, which is the case exactly
when the number of corner variables is the number of columns of A. By the
same reasoning, if a homogeneous system has more variables than equations,
there have to be non trivial solutions, since there has to be at least one free
variable.

2.4.3 The Non-homogeneous Case

A system Ax − b with b 6= 0 is said to be non-homogeneous. A non-
homogeneous system requires that we use an augmented coefficient matrix
(A | b).

To resolve the non-homogeneous case, we need to observe a result some-
times called the Super-Position Principle.

Proposition 2.5. If a system with augmented coefficient matrix (A|b) has
a particular solution p, then any other solution has the form p + x, where
x is an arbitrary element of N (A).

Proof. The proof is quite easy. Suppose p = (p1, . . . , pn)T , and let x =
(x1, . . . , xn)T be an element of N (A). By the distributivity of matrix mul-
tiplication (Proposition 2.1),

A(p + x) = Ap +Ax = b + 0 = b.
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Conversely, if q is also particular solution, then p − q is a solution to the
homogeneous system, since

A(p− q) = Ap−Aq = b− b = 0.

Thus, p− q is an element of N (A). Therefore q = p + x, where x = q− p,
as asserted. This completes the proof.

In the above proof, we made the statement that A(p + x) = Ap +
Ax. This follows from a general algebraic identity called the distributive
law which we haven’t yet discussed. However, our particular use of the
distributive law is easy to verify from first principles.

Example 2.8. Consider the system involving the counting matrix C of
Example 2.5:

1x1 + 2x2 + 3x3 = a

4x1 + 5x2 + 6x3 = b

7x1 + 8x2 + 9x3 = c,

where a, b and c are fixed arbitrary constants. This system has augmented
coefficient matrix

(C|b) =

1 2 3 a
4 5 6 b
7 8 9 c

 .

We can use the same sequence of row operations as in Example 2.5 to put
(C|b) into reduced form (Cred|c) but to minimize the arithmetic with de-
nominators, we will actually use a different sequence.

(C|b) =R2−R1→

1 2 3 a
3 3 3 b− a
7 8 9 c

 R3−2R2→

1 2 3 a
3 3 3 b− a
1 2 3 c− 2b+ 2a

 R3−R1→

1 2 3 a
3 3 3 b− a
0 0 0 c− 2b+ a

 (−1/3)R3→

 1 2 3 a
−1 −1 −1 (1/3)a− (1/3)b
0 0 0 c− 2b+ a

 R2+R1→

1 2 3 a
0 1 2 (4/3)a− (1/3)b
0 0 0 c− 2b+ a

 R1−2R2→

1 0 −1 (−5/3)a+ (2/3)b
0 1 2 (4/3)a− (1/3)b
0 0 0 c− 2b+ a

 .



31

The reduced system turns out to be the same one we obtained by using the
sequence in Example 11.2. We get

1x1 + 0x2 − 1x3 = (−5/3)a+ (2/3)b
0x1 + 1x2 + 2x3 = (4/3)a− (1/3)b
0x1 + 0x2 + 0x3 = a− 2b+ c

Clearly the above system may in fact have no solutions. Indeed, from the
last equation, we see that whenever a−2b+c 6= 0, there cannot be a solution,
since the left side of the third equation is always zero. Such a system is called
inconsistent. For a simpler example of an inconsistent system, think of three
lines in R2 which don’t pass through a common point. This is an example
where the system has three equations but only two variables.

Example 2.9. Let’s solve the system of Example 2.8 for a = 1, b = 1 and
c = 1. In that case, the original system is equivalent to

1x1 + 0x2 − 1x3 = −1
0x1 + 1x2 + 2x3 = 1
0x1 + 0x2 + 0x3 = 0

It follows that x1 = −1 + x3 and x2 = 1− 2x3. This represents a line in R3.

The line of the previous example is parallel to the line of intersection of
the three planes

1x1 + 2x2 + 3x3 = 0
4x1 + 5x2 + 6x3 = 0
7x1 + 8x2 + 9x3 = 0.

In fact, one can see directly that these three planes meet in a line since
our computation with row operations shows that the vectors normal to the
three planes are contained in a single plane through the origin. On the other
hand, when a− 2b+ c 6= 0, what happens is that the line of intersection of
any two of the planes is parallel to the third plane but doesn’t meet it.

2.4.4 Criteria for Consistency and Uniqueness

To finish our treatment of systems (for now), we derive the criteria for
consistency and uniqueness. The key concept is the notion of the rank of a
matrix, which we saw earlier. Recall that the rank of an m× n matrix A is
the number of corners in its reduced row echelon form.
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Clearly the rank of an m×n matrix A is at most the minimum of m and
n. However, we don’t yet know whether the number of corners in a matrix is
well defined, since two different sequences of row operations might produce
two different reduced matrices. Hence we’ll need to assume for now that the
rank is a well defined concept. In fact, we’ll prove in Proposition 3.18 that
the reduced row echelon form of an arbitrary matrix is unique.
Proposition 2.6. Let A be an m× n matrix. Then:

(i) N (A) = {0} if and only if the rank of A is n;

(ii) if Ax = b is consistent and the rank of A is n, then the solution is
unique;

(iii) the linear system Ax = b is consistent if and only if the ranks of A
and (A | b) are the same; and

(iv) if A is n×n and has rank n, the system Ax = b has a unique solution
for all b ∈ Rn.

The converse of statement (iv) is also true.

Proof. The first statement was already proved at the end of Section 2.4.2
using (2.6). The only way to have N (A) = {0} is if every variable in the
system Ax = 0 is a corner variable, which is the same as saying A has rank
n. For the second statement, let u and v be two solutions of Ax = b. Then
A(u − v) = b − b = 0. Thus u − v ∈ N (A), so u − v = 0 by (i). The
third statement follows as in the previous example, because if the rank of
(A | b) is greater than the rank of A, then the last equation is equivalent to
the inconsistent equation 0 = 1. For (iv), let A have rank n. Then (A | b)
also has rank n, since A is n× n and hence the rank of (A | b) can’t exceed
n. Thus Ax = b has a unique solution for all b ∈ Rn by (ii) and (iii). It
remains to show the converse of (iv) that if A and (A | b) have the same
rank for all b, then A has rank n. But if the rank of A is less than n, one can
(exactly as in Example 2.8) produce a b for which (A | b) has rank greater
than the rank of A. We will leave filling in all the details as an exercise.

Systems where m = n are an important special case as they are neither
under determined (fewer equations than unknowns) nor over determined
(more equations than unknowns). When A is n × n of rank n, the system
Ax = b is said to be nonsingular. Thus the nonsingular systems are the
square systems which are always consistent and always have unique solu-
tions. We will also say that an n × n matrix A is nonsingular if it has
maximal rank n. If the rank of A is less than n, we will call A singular.
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Exercises

Exercise 2.1. Consider the linear system

x1 + 2x2 + 4x3 + 4x4 = 7
x2 + x3 + 2x4 = 3

x1 + 0x2 + 2x3 + 0x4 = 1

(a) Let A be the coefficient matrix of the associated homogeneous system.
Find the reduced form of A.

(b) Determine whether the system is consistent and, if so, find the general
solution.

(c) Find the fundamental solutions of Ax = 0 and show that the every
solution of Ax = 0 is a linear combination of the fundamental solutions.

(d) Is the system Ax = b consistent for all b ∈ R3? If not, find an equation
which the components of b must satisfy.

Exercise 2.2. Show that a real 2× 2 matrix A =
(
a b
c d

)
is nonsingular if

and only if ad− bc 6= 0.

Exercise 2.3. Consider the system

ax+ by = e

cx+ dy = f.

Show that if
(
a b
c d

)
is nonsingular, then the unique solution is given by

x = (de− bf)/(ad− bc) and y = (af − ce)/(ad− bc).

Exercise 2.4. If A is 9× 27, explain why the system Ax = 0 must have at
least 18 fundamental solutions.

Exercise 2.5. Consider the system Ax = 0 where A =
(

1 −1 2 −1 1
−2 2 1 −2 0

)
. Find

the fundamental solutions and show that every element in N (A) is a linear
combination of the fundamental solutions.

Exercise 2.6. Let A be the 2 × 5 matrix of Problem 2.5. Solve the com-
pounded linear system (

A| 1 −1
−2 0

)
.
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Exercise 2.7. Set up a linear system to determine whether (1, 0,−1, 1)T is
a linear combination of (−1, 1, 2, 0)T , (2, 1, 0, 1)T and (0, 1, 0,−1)T with real
coefficients.

Exercise 2.8. Set up a linear system to determine whether (1, 0, 1, 1)T is
a linear combination of (1, 1, 0, 0)T , (0, 1, 0, 1)T and (0, 1, 1, 1)T with coeffi-
cients in F2.

Exercise 2.9. A baseball team has won 3 mores games at home than on
the road, and lost 5 more at home than on the road. If the team has played
a total of 42 games, and if the number of home wins plus the number of road
losses is 20, determine the number of home wins, road wins, home losses and
road losses.

Exercise 2.10. For what real values of a and b does the system

x+ ay + a2z = 1
x+ ay + abz = a

bx+ a2y + a2bz = a2b

have a unique solution?

Exercise 2.11. True or False: If the normals of three planes in R3 through
the origin lie in a plane through the origin, then the planes meet in a line.

Exercise 2.12. Suppose A is a 12 × 15 matrix of rank 12. How many
fundamental solutions are there in N (A)?

Exercise 2.13. Find the number of nonsingular real 2× 2 matrices having
the property that all entries are either 0 or 1?

Exercise 2.14. Determine the number of nonsingular real 3 × 3 matrices
with only 0 or 1 entries under the following conditions:

(i) exactly 3 entries are nonzero;

(ii) exactly 4 entries nonzero; and

(iii) exactly 8 entries are nonzero.
Bonus: find the total number of nonsingular real 3 × 3 matrices with all
entries either 0 or 1.

Exercise 2.15. ∗ Determine the number of nonsingular 3× 3 matrices over
F2.
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Exercise 2.16. Find the ranks of each of the following matrices:1 2 3
1 4 9
1 8 27

 ,

1 2 2
1 4 4
1 8 8

 .

Exercise 2.17. ∗ Find the rank of

A =

1 a a2

1 b b2

1 c c2

 ,

where a, b, c are arbitrary real numbers.

Exercise 2.18. Find an equation which describes all possible values of
a, b, c such that (a, b, c)T is a linear combination of (−2, 1, 0)T , (2, 1, 2)T and
(0, 1, 1)T .

Exercise 2.19. If a chicken and a half lay and egg and a half in a day and a
half, how many eggs does a single chicken lay in one day? Can you express
this to linear equations.



36

2.5 Summary

This Chapter is an introduction to linear systems and matrices. We began
by introducing the general linear system of m equations in n unknowns with
real coefficients. There are two types of systems called homogeneous and
non-homogeneous according to whether the constants on the right hand sides
of the equations are all zeros or not. The solutions make up the solution set.
If the system is homogeneous, every solution is a linear combination of the
fundamental solutions. (We will see in the next Chapter that this means
that the solution set is a subspace of Rn.) In order to write the system in a
convenient form, we introduced the coefficient matrix for homogeneous sys-
tems and the augmented coefficient matrix for non-homogeneous systems.
We then wrote down the three row operations of Gaussian reduction. The
row operations give a specific set of rules for bringing the coefficient matrix
and augmented coefficient matrix into a normal form known as reduced form
or reduced row echelon form. The point is that performing a row operation
on the coefficient matrix (or augmented coefficient matrix) gives a new co-
efficient matrix (or augmented coefficient matrix) whose associated linear
system has exactly the same solution space (or set in the non-homogeneous
case).

After a matrix has been put into reducued form, one can read off its
rank (the number of non-zero rows). We then obtained criteria which are
necessary and sufficient for the existence and uniqueness of solutions. A non-
homogeneous system has a solution if and only if its augmented coefficient
matrix and coefficient matrix have the same rank. A unique solution exists
if and only if the augmented coefficient matrix and coefficient matrix have
the same rank and the rank is the number of unknowns.



Chapter 3

More Matrix Theory

The purpose of this chapter is to expand our knowledge of matrix theory. In
particular we will study matrix inverses and use inverses to and to sharpen
what we can say about linear systems. We will also see how row operations
and matrix multiplication are related. Finally, will derive the LPDU de-
composition of a square matrix and apply it to show that the reduced row
echelon form of an arbitrary matrix is unique.

3.1 Matrix Multiplication

In this section, we will define the product of two matrices and state the basic
properties of the resulting matrix algebra. Let Rm×n denote the set of all
m×n matrices with real entries, and let (F2)m×n denote the set of all m×n
matrices over F2.

We have already defined matrix addition and the multiplication of a
matrix by a scalar, and we’ve seen how to multiply an m× n matrix and a
column vector with n components. We wil now define matrix multiplication.
In general, the product AB of two matrices A and B is defined only when
the number of columns of A equals the number of rows of B. Suppose
A = (a1 a2 · · · an) is m× n and B =

(
b1 b2 · · · bp

)
is n× p. Since we

already know the definition of each Abj , let us simply put

AB =
(
Ab1 Ab2 · · · Abp

)
. (3.1)

To write this out more precisely, let C = AB, and suppose the entry of
C in the i-th row and k-th column is denoted cik. Then, using summation
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notation, we have

cik =
n∑
j=1

aijbjk,

so

AB =
( n∑
j=1

aijbjk
)
.

Thus, for real matrices, we have

Rm×n · Rn×p ⊂ Rm×p,

where · denotes matrix multiplication.
Another way of putting the definition is to say that if the columns of A

are a1, . . . ,an, then the r-th column of AB is

b1ra1 + b2ra2 + . . . bnran. (3.2)

Hence the r-th column of AB is the linear combination of all n columns of
A using the n entries in the r-th column of B as the scalars. One can also
express AB as a linear combination of the rows of B. The reader is invited
to work this out explicitly. We will in fact use it to express row operations
in terms of matrix multiplication. below

Example 3.1. Here are two examples.(
1 3
2 4

)(
6 0
−2 7

)
=
(

1 · 6 + 3 · (−2) 1 · 0 + 3 · 7
2 · 6 + 4 · (−2) 2 · 0 + 4 · 7

)
=
(

0 21
4 28

)
.

Note how the columns of the product are linear combinations. Computing
the product in the opposite order gives a different result:(

6 0
−2 7

)(
1 3
2 4

)
=
(

6 · 1 + 0 · 2 6 · 3 + 0 · 4
−2 · 1 + 7 · 2 −2 · 3 + 7 · 4

)
=
(

6 18
12 22

)
.

This example points out that for there exist 2×2 matrices A and B such
that AB 6= BA, even though both products AB and BA are defined. In
general, matrix multiplication is not commutative. In fact, almost any pair
of 2×2 matrices you choose will not commute. In general, the multiplication
of n × n matrices is not commutative. The only exception is that all 1 × 1
commute (why?).
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3.1.1 The Transpose of a Matrix

Another operation on matrices is transposition, or taking the transpose. If
A is m × n, the transpose AT of A is the n ×m matrix AT := (crs), where
crs = asr. This is easy to remember: the ith row of AT is just the ith column
of A.

Example 3.2. If

A =
(

1 2
3 4

)
,

then

AT =
(

1 3
2 4

)
.

An example of a 2× 2 symmetric matrix is(
1 3
3 5

)
.

Note that A and AT have the same entries on the diagonal. Another
simple fact is that

(AT )T = A.

Definition 3.1. A matrix A which is equal to its transpose (that is, A =
AT ) is called symmetric.

Clearly, every symmetric matrix is square. The symmetric matrices over
R turn out to be especially fundamental, as we will see later.

The dot product v ·w of two vectors v,w ∈ Rn is defined to be the matrix
product

v ·w = vTw =
n∑
i=1

viwi.

Proposition 3.1. Let A and B be m× n matrices. Then

(AT +BT ) = AT +BT .

Furthermore, (
AB
)T = BTAT .

Proof. The first identity is left as an exercise. The product transpose iden-
tity can be seen as follows. The (i, j)-entry of BTAT is the dot product of
the i-th row of BT and the j-th column of AT . Since this is the same thing
as the dot product of the j-th row of A and the i-th column of B, which
is the (j, i)-entry of AB, and hence the (i, j)-entry of (AB)T , we see that
(AB)T = BTAT . Suggestion: try this out on an example.
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3.1.2 The Algebraic Laws

Except for the commutativity of multiplication, the usual algebraic proper-
ties of addition and multiplication in the reals also hold for matrices.
Proposition 3.2. Assuming all the sums and products below are defined,
then matrix addition and multiplication satisfy:

(1) the associative law: Matrix addition and multiplication are asso-
ciative: (

A+B
)

+ C = A+
(
B + C

)
and

(
AB
)
C = A

(
BC

)
.

(2) the distributive law: Matrix addition and multiplication are dis-
tributive:

A
(
B + C

)
= AB +AC and

(
A+B

)
C = AC +BC.

(3) the scalar multiplication law: For any scalar r,(
rA
)
B = A

(
rB
)

= r
(
AB
)
.

(4) the commutative law for addition: Matrix addition is commu-
tative: A+B = B +A.

Verifying these properties is a routine exercise, so we will omit the details.
I suggest working a couple of examples to convince yourself, if necessary.
Though the associative law for multiplication doesn’t seem to be exciting, it
often turns to be extremely useful. We will soon see some examples of why.

Recall that the n×n identity matrix In is the matrix having one in each
diagonal entry and zero in each entry off the diagonal. For example,

I2 =
(

1 0
0 1

)
and I3 =

1 0 0
0 1 0
0 0 1

 .

Note the inteersting fact that we can also construct the identity matrix over
F2. The off diagonal entries are 0, of course, and the diagonal entries consist
of the nonzero element 1, which is is the multiplicative identity of F2.

We have
Proposition 3.3. If A is an m × n matrix (over R or F2), then AIn = A
and ImA = A.

Proof. This is an exercise in using the definition of multiplication.



41

Exercises

Exercise 3.1. Make up three matrices A,B,C so that AB and BC are
defined. Then compute AB and (AB)C. Next compute BC and A(BC).
Compare your results.

Exercise 3.2. Prove the assertion (A+B)T = AT +BT in Proposition 3.1.

Exercise 3.3. Suppose A and B are symmetric n × n matrices. (You can
even assume n = 2.)

(a) Decide whether or not AB is always symmetric. That is, whether
(AB)T = AB for all symmetric A and B?

(b) If the answer to (a) is no, what condition ensures AB is symmetric?

Exercise 3.4. Suppose B has a column of zeros. How does this affect a
product of the form AB? What if A has a row or a column of zeros?

Exercise 3.5. Show how to express the rows of the matrix product AB as
linear combinations of the rows of B.

Exercise 3.6. Verify Proposition 3.3 for all A in either Rm×n or Fm×n2 .

Exercise 3.7. Find all 2 × 2 matrices A =
(
a b
c d

)
such that AB = BA,

where B =
(

1 2
3 4

)
.

Exercise 3.8. Find all 2 × 2 matrices A =
(
a b
c d

)
such that AC = CA,

where C =
(

1 2
1 2

)
. Is your result here any different from the result you

obtained in Exercise 3.7.

Exercise 3.9. Prove that if S ∈ R2×2 commutes with every matrix A =(
a b
c d

)
∈ R2×2, then S = sI2 for some s ∈ R. Matrices of the form aIn are

called scalar matrices.

Exercise 3.10. Let A be the 2×2 matrix over F2 such that aij = 1 for each
i, j. Compute Am for any integer m > 0. Does this question make sense if
m < 0? (Note Aj is the product AA · · ·A of A with itself j times.)

Exercise 3.11. Let A be the n× n matrix over R such that aij = 2 for all
i, j. Find a formula for Aj for any positive integer j.
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Exercise 3.12. Give an example of a 2× 2 matrix A such that every entry
of A is either 0 or 1 and A2 = I2 as a matrix over F2, but A2 6= I2 as a
matrix over the reals.
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3.2 Elementary Matrices and Row Operations

The purpose of this section is make a connection between matrix multipli-
cation and row operations. What we will see is that row operations can be
done by matrix multiplication. This may be somewhat unexpected, so the
reader might want to recall the result of Exercise 3.5.

Let us first consider the 2 × n case. Here, the following three types of
2× 2 matrices are used:

E1 =
(

0 1
1 0

)
, E2 =

(
r 0
0 1

)
or
(

1 0
0 r

)
, E3 =

(
1 s
0 1

)
or
(

1 0
s 1

)
.

These matrices enable us to do row operations of types I, II and III re-
spectively via left or pre-multiplication. Hence they are called elementary
matrices. For example, (

0 1
1 0

)(
a b
c d

)
=
(
c d
a b

)
,

(
r 0
0 1

)(
a b
c d

)
=
(
ra rb
c d

)
,

and (
1 s
0 1

)(
a b
c d

)
=
(
a+ sc b+ sd
c d

)
.

The same idea works in general.

Definition 3.2. An n× n matrix obtained from In by performing a single
row operation is called an elementary n× n matrix.

Here is the main point.
Proposition 3.4. Let A be n × p, and assume E is an elementary n × n
matrix. Then EA is the matrix obtained by performing the row operation
corresponding to E on A.

Proof. Recall that for any E ∈ Rn×n, the rows of EA are linear combinations
of the rows of A using the entries of E = (eij) as scalars. In fact, if ai is the
i-th row of A, then the i-th row of EA is

ei1a1 + ei2a2 + · · ·+ einan.

Thus, if E is obtained by interchanging the j-th and k-th rows of In, then in
EA, the j-th and k-th rows of A have been interchanged, and the other rows
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are unchanged. For example, suppose we wish to interchange the first and
second rows of A. If we put EA = B, then we want to have b1 = a2, b2 = a1

and bj = aj if j 6= 1, 2. Thus we let e12 = e21 = 1, e11 = e22 = 0 and let eij
be the corresponding element of In for the other pairs (i, j). Similarly, if E
is the matrix obtained by multiplying the i-th row of In by r, then in EA the
i-th row of A has been multiplied by r, and all other rows are unchanged.
The argument for the third type of row operation is similar.

In fact, since EIn = E, the matrix E performing the desired row opera-
tion is unique. We can now state an easy but important result.

Proposition 3.5. An arbitrary n×pmatrix A can be put into reduced form
by a performing sequence of left multiplications on A using n×n elementary
matrices. In other words, we can write Ared = BA, where B is a product of
elementary n× n matrices.

Proof. We know from Proposition 2.2 that any matrix can be put into re-
duced form by a sequence of row operations. But row operations are per-
formed by left multiplication by elementary matrices.

This procedure can be represented as follows. First, replace A with
A1 = E1A, then A1 with A2 = E2(E1A) and so forth. Hence we get the
sequence

A→ A1 = E1A→ A2 = E2(E1A) → · · · → Ek(Ek−1(· · · (E1A) · · · )),

the last matrix being Ared. This gives us a matrix

B = (Ek(Ek−1 · · · (E1A) · · · ))

with the property that BA = Ared.
It needs to be emphasized that there is no reason B should be unique,

since one can easily devise other sequences of row operations that reduce A,
Nevertheless, it does turn out B is unique in certain cases. One of these is
the case where A is a nonsingular.

By the associative law, we can express B without using parentheses,
writing it simply as B = EkEk−1 · · ·E1.

Example 3.3. Let’s compute the matrix B produced by the sequence of
row operations in Example 2.5 which puts the counting matrix C in reduced
form. Examining the sequence of row operations, we see that B is the
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product1 −2 0
0 1 0
0 0 1

1 0 0
0 −1/3 0
0 0 1

1 0 0
0 1 0
0 −2 1

 1 0 0
0 1 0
−7 0 1

 1 0 0
−4 1 0
0 0 1

 .

Thus

B =

−5/3 2/3 0
4/3 −1/3 0
1 −2 1

 .

Be careful to express the product in the correct order. The first row oper-
ation is done by the matrix on the far right and the last by the matrix on
the far left. Thus

BC =

−5/3 2/3 0
4/3 −1/3 0
1 −2 1

1 2 3
4 5 6
7 8 9

 =

1 0 −1
0 1 2
0 0 0

 .

That is, BC = Cred.

In the above computation, you do not need to explicitly multiply the
elementary matrices out. Just start at the right and apply the sequence
of row operations working to the left. A convenient way of doing this is
to begin with the 3 × 6 matrix (A|I3) and carry out the sequence of row
operations. The final result will be (Ared|B). Thus if we start with

(A|I3) =

1 2 3 1 0 0
4 5 6 0 1 0
7 8 9 0 0 1

 ,

we end with

(Ared|B) =

1 0 −1 −5/3 2/3 0
0 1 2 4/3 −1/3 0
0 0 0 1 −2 1

 .

Example 3.4. To do another example, consider the matrix

A =

1 0 1
0 1 1
1 1 1


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with the catch that we consider A as a 3×3 matrix over F2. To row reduce A,
we can use the following steps: R3 → R3+R1, R3 → R3+R2, R2 → R2+R3,
and R1 → R1 +R3. Hence the matrix B such that BA = Ared is1 0 1

0 1 0
0 0 1

1 0 0
0 1 1
0 0 1

1 0 0
0 1 0
0 1 1

1 0 0
0 1 0
1 0 1

 .

Computing the product, we obtain

B =

0 1 1
1 0 1
1 1 1

 .

The reader should check that BA = I3.

3.2.1 Application to Linear Systems

How does this method apply to solving a linear system Ax = b? Starting
with Ax = b and multiplying by an elementary matrix E gives a new linear
system EAx = Eb equivalent to the original system (by Proposition 2.3).
Continuing in this way, we obtain
Proposition 3.6. Given a linear system Ax = b, there exists a square
matrix B which is a product of elementary matrices, such that the original
system is equivalent to Aredx = Bb.

Proof. Just apply Propositions 3.5 and 2.3.

The advantage of knowing the matrix B which brings A into reduced
form is that one can handle an arbitrary number of systems as easily as one.
That is, one can just as easily solve a matrix linear equation AX = D, where
X = (xij) is a matrix of variables and D = (Djk) is a matrix of constants.
If A is m× n and D has p columns, then X is n× p and D is m× p. This
matrix equation is equivalent to AredX = BD.
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Exercises

Exercise 3.13. Find the reduced row echelon form for each of the following
matrices, which are assumed to be over R:

A1 =

1 1 0
2 3 1
1 2 1

 , A2 =

1 2 −1 1
2 3 1 0
0 1 2 1

 , A3 =


1 0 1 0
0 1 1 0
1 1 0 0
1 0 0 1

 .

Exercise 3.14. Find matrices B1, B2 and B3 which are products of elemen-
tary matrices such that BiAi is reduced, where A1, A2, A3 are the matrices
of Exercise 3.13.

Exercise 3.15. Find the reduced row echelon form for each of the following
matrices, assuming each matrix is defined over F2:

C1 =

1 1 0
0 1 1
1 0 1

 , C2 =

1 0 1 1
0 1 1 0
0 1 0 1

 , C3 =


1 0 1 0
0 1 1 0
1 1 0 0
1 0 0 1

 .

Exercise 3.16. Find matrices D1, D2 and D3 defined over F2 which are
products of elementary matrices such that DiCi is reduced, where C1, C2, C3

are the matrices of Exercise 3.15.

Exercise 3.17. Prove carefully that if E is an elementary n × n matrix
and F is the elementary matrix that performs the reverse operation, then
FE = EF = In.

Exercise 3.18. Write down all the 3 × 3 elementary matrices E over F2.
For each E, find the matrix F defined in the previous exercise such that
FE = EF = I3.

Exercise 3.19. List all the row reduced 2× 3 matrices over F2.

Exercise 3.20. Let E be an arbitrary elementary matrix.

(i) Show that ET is also an elementary matrix.

(ii) Explain how to compute AE.

Exercise 3.21. In this exercise, we will introduce column operations. The
reader should base their answers on the case of row operations.

(1) Define the notion of reduced column echelon form for anm×nmatrix.
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(2) Next, define the three types of column operations.

(3) Show how to perform column operations using elementary matrices.



49

3.3 Matrix Inverses

Given an elementary n×n matrix E, one can easily see that there exists an
elementary matrix F such that FE = In. A little thought will convince you
that EF = In as well. Doing a row operation then undoing it produces the
same result as first undoing it and then doing it. Either way you are back
to where you started. This essential property is generalized in the next

Definition 3.3. Suppose two n × n matrices A and B have the property
that AB = BA = In. Then we say A is an inverse of B (and B is an inverse
of A). A matrix with an inverse is said to be invertible.

Let us first show

Proposition 3.7. Suppose A ∈ Rn×n or A ∈ (F2)n×n and A has an inverse
B. Then B is unique.

Proof. Suppose that A has two inverses B and C. Then

B = BIn = B(AC) = (BA)C = InC = C.

Thus B = C, so the inverse is unique.

Note that the associative law was used in the above proof in an essential
way. From now on, we will use A−1 to denote the (unique) inverse of A, if
it exists.

The reader should check that any elementary matrix E has an inverse,
which is also elementary.

Example 3.5. For example, the inverses of the 2 × 2 elementary matrices
are given as follows:

E1 =
(

0 1
1 0

)
⇒ E−1

1 =
(

0 1
1 0

)
,

E2 =
(
r 0
0 1

)
⇒ E−1

2 =
(
r−1 0
0 1

)
,

and

E3 =
(

1 s
0 1

)
⇒ E−1

3 =
(

1 −s
0 1

)
.
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3.3.1 A Necessary and Sufficient Condition for Existence

Recall that a linear system Ax = b is called nonsingular if the coefficient
matrix A is square of maximal rank. In general, we say that an n×n matrix
A is nonsingular if A has rank n or, equivalently, Ared = In. We therefore
have the

Proposition 3.8. If an n×n matrix A is nonsingular, there exists an n×n
matrix B such that BA = In.

Proof. This follows from Proposition 3.4 since Ared = In.

Thus a nonsingular matrix has a left inverse. We will now prove the
main result on matrix inverses. It will tell us that in particular a left inverse
of a square matrix is a two sided inverse.

Theorem 3.9. Suppose A ∈ Rn×n or A ∈ (F2)n×n. Then we have the
following:

(i) A is nonsingular if and only if A has a left inverse;

(ii) if A has a left inverse B, then A is invertible and B is A’s unique inverse
(that is, if BA = In, then AB = In, and so B = A−1); and

(iii) in particular, A is nonsingular if and only if it is invertible.

Proof. We’ll suppose A ∈ Rn×n. The other case is handled just the same.
We already know that if A is nonsingular, it has a left inverse. Hence
suppose A has a left inverse B. To show that the rank of A is n, it suffices,
by Proposition 2.6, to show that if Ax = 0, then x = 0. Suppose Ax = 0,
then

0 = B0 = B(Ax) = (BA)x = Inx = x. (3.3)

Thus indeed, x = 0, so A has rank n. Hence, if A has a left inverse, A is
nonsingular, and (i) is finished. Next suppose A has a left inverse. Then,
by (i), A has rank n, so we know the system Ax = b is consistent for every
b ∈ Rn. Hence, the system Ax = ei has a solution for each i, where ei is
the ith column of In. It follows that there exists an n× n matrix X so that
AX = In. We now show that B = X. In fact, repeating the argument in
Proposition 3.7, we see that

B = BIn = B(AX) = (BA)X = InX = X.

Thus, if A has a left inverse, it has an inverse, proving (ii). Finally, suppose
BA = In. Then A has rank n, so A has an inverse, say C. Repeating the
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argument just given replacing X with C, it follows that B = C. Thus a left
inverse of A is necessarily A−1.

One of the appealing applications of Theorem 3.9 is the following formula
for the unique solution of a nonsingular system.

Corollary 3.10. If A nonsingular, then the system

Ax = b

has the unique solution x = A−1b.

Proof. This is an exercise.

Notice that this solution is analogous to the solution of ax = b which
one may express as x = b/a when a 6= 0. The difference is that b/A is not
defined. We have to express the solution in the only sensical way, namely
x = A−1b.

The product of any two invertible n×n matrices A and B is also invert-
ible. Indeed, (AB)−1 = B−1A−1. For

(B−1A−1)AB = B−1(A−1A)B = B−1InB = B−1B = In.

This is used in the proof of the following useful Proposition.

Proposition 3.11. Any product of elementary matrices is invertible, and,
conversely, any invertible matrix is a product of elementary matrices.

The proof is left as an exercise.

3.3.2 Methods for Finding Inverses

We have two ways of finding the matrix B so that BA = Ared. The first
is simply to multiply out the sequence of elementary matrices which row
reduces A. This is not as bad as it sounds since multiplying elementary
matrices is elementary. The second method is to form the augmented matrix
(A | In) and row reduce. The final result will be in the form (In | B). This
is the method used in most textbooks. Let’s begin with an example.

Example 3.6. Suppose we want to find an inverse for

A =

1 2 0
1 3 1
0 1 2

 .
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Since we only need to solve the matrix equation XA = I3, we can use our
previous strategy of row reducing (A | I3).

(A | I3) =

1 2 0 1 0 0
1 3 1 0 1 0
0 1 2 0 0 1

→

1 2 0 1 0 0
0 1 1 −1 1 0
0 1 2 0 0 1

→

1 2 0 1 0 0
0 1 1 −1 1 0
0 0 1 1 −1 1

→

1 2 0 1 0 0
0 1 0 −2 2 −1
0 0 1 1 −1 1

→

1 0 0 5 −4 2
0 1 0 −2 2 −1
0 0 1 1 −1 1

 .

Hence

A−1 = B =

 5 −4 2
−2 2 −1
1 −1 1

 ,

since, by construction, BA = I3.

Example 3.7. To take a slightly more interesting example, let

A =


1 0 0 1
1 1 0 0
0 1 1 1
1 1 1 1

 ,

where the entries of A are elements of F2. Using the above procedure, we
see that

A−1 =


0 0 1 1
0 1 1 0
1 1 1 1
1 0 1 1

 .

Note that the correctness of this result may be (and generally should) be
checked by computing directly that

I4 =


0 0 1 1
0 1 1 1
1 1 1 0
1 0 1 1




1 0 0 1
1 1 0 0
0 1 1 1
1 1 1 1

 .
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There is somewhat less obvious third technique which is sometimes also
useful. If we form the augmented coefficient matrix (A | b), where b repre-
sents the column vector with components b1, b2, . . . bm and perform the row
reduction of this augmented matrix, the result will be in the form (In | c),
where the components of c are certain linear combinations of the compo-
nents of b. The coefficients in these linear combinations give us the entries
of A−1. Here is an example.

Example 3.8. Again let

A =

1 2 0
1 3 1
0 1 2

 .

Now form 1 2 0 a
1 3 1 b
0 1 2 c


and row reduce. The result is1 0 0 5a− 4b+ 2c

0 1 0 −2a+ 2b− c
0 0 1 a− b+ c

 .

Thus,

A−1 =

 5 −4 2
−2 2 −1
1 −1 1

 .

3.3.3 Matrix Groups

In this section, we will introduce the concept of a matrix group and give a
number of examples. Matrix groups are sometimes also called linear groups.
The matrix group structure will be useful later in stating and proving some
of the main results on matrices. The basic example of a matrix group is the
set GL(n,R) of all invertible elements of Rn×n. That is,

GL(n,R) = {A ∈ Rn×n | A−1 exists}. (3.4)

Notice that, by definition, every element in GL(n,R) has an inverse. More-
over, In is an element of GL(n,R), and if A and B are elements of GL(n,R),
then so is their product AB. These three properties define what we mean
by a matrix group.
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Definition 3.4. A subset G of Rn×n is called a matrix group if the following
three conditions hold:

(i) if A,B ∈ G, then AB ∈ G,

(ii) In ∈ G, and

(iii) if A ∈ G, then A−1 ∈ G.

It turns out that these three axioms are enough to give the class of matrix
groups an extremely rich structure. Of course, as already noted above,
GL(n,R) is a matrix group (commonly called the general linear group ). In
fact, if G ⊂ Rn×n is a matrix group, then, by definition, G ⊂ GL(n,R).
A subset of GL(n,R) which is also a matrix group is called a subgroup of
GL(n,R). Thus matrix groups are subgroups of some GL(n,R).

The simplest example of a subgroup of GL(n,R) is {In}: this is the so
called trivial subgroup. To get some more interesting interesting examples,
let us consider permutation matrices.

Example 3.9 (Permutation Matrices). A matrix P obtained from In by a fi-
nite (possibly vacuous) sequence of row swaps is called a permutation matrix.
In other words, a permutation matrix is a matrix P ∈ Rn×n such that there
are row swap matrices S1, . . . , Sk ∈ Rn×n for which P = S1 · · ·Sk. (Recall
that a row swap matrix is by definition an elementary matrix obtained by
interchanging two rows of In.) Clearly, In is a permutation matrix, and any
product of permutation matrices is also a permutation matrix. It remains
to see that the inverse of a permutation matrix is also a permutation ma-
trix. Let P = S1 · · ·Sk be a permutation matrix. Then P−1 = S−1

k · · ·S−1
1 .

But every row swap S has the property that S = S−1, so P−1 is indeed a
permutation matrix, namely Sk · · ·S1.

Let P (n) denote the set of n × n permutation matrices. One can also
describe P (n) as the set of all matrices obtained from In by permuting the
rows of In. Thus P (n) is the set of all n×n matrices whose only entries are
0 or 1 such that every row and every column has exactly one non-zero entry.
It follows from elementary combinatorics that P (n) has exactly n! elements.

The inverse of a permutation matrix has a beautiful expression.

Proposition 3.12. If P is a permutation matrix, then P−1 = P T .

Proof. We leave this as an exercise.
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Example 3.10. P (3) consists of the following five 3 × 3 permutation ma-
trices and I3:1 0 0

0 0 1
0 1 0

 ,

0 1 0
1 0 0
0 0 1

 ,

0 1 0
0 0 1
1 0 0

 ,

0 0 1
1 0 0
0 1 0

 ,

0 0 1
0 1 0
1 0 0

 .

The first, second and fifth matrices in the above list are row swaps, and the
other two are products of row swaps.

Definition 3.5 (The orthogonal group). Let Q ∈ Rn×n. Then we say that
Q is orthogonal if and only if QTQ = In. The set of all n × n orthogonal
matrices is denoted by O(n,R). We call O(n,R) the orthogonal group.

Proposition 3.13. O(n,R) is a subgroup of GL(n,R).

Proof. It follows immediately from the definition and Theorem 3.9 that if
Q is orthogonal, then QT = Q−1. Thus Q = (Q−1)T , and we see that
(Q−1)TQ−1 = QQ−1 = In. Consequently, if Q is orthogonal, then Q−1 is
orthogonal. The identity In is clearly orthogonal, so it remains to show
that the product of two orthogonal matrices is orthogonal. Let Q and R be
orthogonal. Then

(QR)T (QR) = (RTQT )(QR) = RT (QTQ)R = RT InR = In.

Hence O(n,R) is a subgroup of GL(n,R).

By Proposition 3.12, we have P (n) ⊂ O(n,R). That is, every permuta-
tion matrix is orthogonal. Hence P (n) is also a subgroup of O(n,R).

The orthogonal group for O(2,R) is especially interesting. It has an
important subgroup which is denoted as SO(2) and called the rotation group
because rotation matrices act on R2 as rotations. This subgroup consists of
the matrices

Rθ =
(

cos θ − sin θ
sin θ cos θ

)
.

The fact that SO(2) is a subgroup of O(2,R) follows from trigonometry. For
example, the sum formulas for cos(θ + µ) and sin(θ + µ), are equivalent to
the formula

RθRµ = RµRθ = Rθ+µ. (3.5)

We will investigate other aspects of O(2,R) in the Exercises.



56

Exercises

Exercise 3.22. Find the inverse of each of the following real matrices or
show that the inverse does not exist.

(a)
(

1 2
4 1

)
(b)

1 0 1
0 1 −1
1 1 0

 (c)

1 0 −2
0 1 1
1 1 0

 (d)


1 0 1 0
0 1 0 −1
1 0 −1 0
0 1 0 1

.

Exercise 3.23. If possible, invert

B =


1 2 −1 −1
−2 −1 3 1
−1 4 3 −1
0 3 1 −1

 .

Exercise 3.24. If possible, find the inverse of A =

1 0 1
0 1 1
1 1 0

 over F2.

Exercise 3.25. Let A =

0 1 1
1 0 1
1 1 0

. Show that A has an inverse over R

but A does not have an inverse over F2.

Exercise 3.26. Determine whether the following 5 × 5 matrix A over F2

has an inverse, and if it does find it:

A =


1 0 1 1 1
1 1 0 1 0
1 1 0 0 1
1 0 1 1 0
1 1 1 0 1

 .

Exercise 3.27. Suppose A =
(
a b
c d

)
, and assume that ∆ = ad − bc 6= 0.

Show that A−1 = 1
∆

(
d −b
−c a

)
. What does the condition ∆ 6= 0 mean in terms

of the rows of A?

Exercise 3.28. Suppose A has an inverse. Find a formula for the inverse
of AT ?

Exercise 3.29. Prove Proposition 3.11. That is, show that A is invertible
if and only if A is a product of elementary matrices.



57

Exercise 3.30. Suppose A is n× n and there exists a right inverse B, i.e.
AB = In. Show A invertible.

Exercise 3.31. Let C =
( 1 a b

0 1 c
0 0 1

)
. Find a general formula for C−1.

Exercise 3.32. Show that if A and B are n × n and have inverses, then
(AB)−1 = B−1A−1. What is (ABCD)−1 if all four matrices are invertible?

Exercise 3.33. Suppose A is invertible m×m and B is m× n. Solve the
equation AX = B.

Exercise 3.34. Suppose A and B are both n × n and AB is invertible.
Show that both A and B are invertible. (See what happens if Bx = 0.)

Exercise 3.35. Let A and B be two n × n matrices over R. Suppose
A3 = B3, and A2B = B2A. Show that if A2 +B2 is invertible, then A = B.
(Hint: Consider (A2 +B2)A.)

Exercise 3.36. Let A and B be n× n matrices over R.

(i) If the inverse of A2 is B, show that the inverse of A is AB.

(ii) If A, B, and A+B are all invertible, find the inverse of A−1 +B−1

in terms of A, B and A+B.

Exercise 3.37. Is it TRUE or FALSE that if an n× n matrix with integer
entries has an inverse, then the inverse also has integer entries?

Exercise 3.38. Show that a symmetric orthogonal matrix is its own inverse.

Exercise 3.39. Without computing, try to guess the inverse of the matrix

A =


1 0 1 0
0 1 0 −1
1 0 −1 0
0 1 0 1

 .

(Hint: compute QTQ.)

Exercise 3.40. Using the sum formulas for cos(θ+µ) and sin(θ+µ), prove
that RθRµ = Rθ+µ for all real numbers θ and µ.

Exercise 3.41. Two vectors x, y ∈ R2 are said to be orthogonal if xTy = 0:
that is, x1y1 +x2y2 = 0. Using the definition of an orthogonal matrix, prove
that the columns of an orthogonal matrix are orthogonal as are the rows,
and, furthermore, each column and row has length one. (Note: the square
of the length of x is xTx.)
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Exercise 3.42. ∗ Show that every element H of O(2,R) that isn’t a rotation
matrix satisfies HT = H, H2 = I2 and H 6= I2.

Exercise 3.43. Let S1 =

0 1 0
1 0 0
0 0 1

 , and S2 =

1 0 0
0 0 1
0 1 0

 . Show that

every 3× 3 permutation matrix is a product of S1 and S2.

Exercise 3.44. Let S1 and S2 be the permutation matrices defined in Ex-
ercise 3.43. Show that (S1S2)3 = I3.

Exercise 3.45. Show that every permutation matrix is orthogonal. Deduce
that if P is a permutation matrix, then P−1 = P T . This proves Proposition
3.12.

Exercise 3.46. Show that the following two matrices are permutation ma-
trices and find their inverses:

0 0 0 0 1
0 0 0 1 0
0 0 1 0 0
0 1 0 0 0
1 0 0 0 0

 ,


0 0 1 0 0
0 0 0 0 1
1 0 0 0 0
0 1 0 0 0
0 0 0 1 0

 .

Exercise 3.47. You are a code-breaker (more accurately, a cryptographer)
assigned to crack a secret cipher constructed as follows. The sequence 01
represents A, 02 represents B and so forth up to 26, which represents Z. A
space between words is indicated by inserting 00. A text can thus be encoded
as a sequence. For example, 1908040002090700041507 stands for ”the big
dog”. We can think of this as a vector in R22. Suppose a certain text has
been encoded as a sequence of length 14,212=44×323, and the sequence has
been broken into 323 consecutive intervals of length 44. Next, suppose each
sub-interval is multiplied by a single 44 × 44 matrix C. The new sequence
obtained by laying the products end to end is called the cipher text, because
it has now been enciphered, and it is your job to decipher it. Discuss the
following questions.

(i) How does one produce an invertible 44×44 matrix in an efficient way,
and how does one find its inverse?

(ii) How many of the sub-intervals will you need to decipher to break
the whole cipher by deducing the matrix C?
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3.4 The LPDU Factorization

Recall that an invertible matrix A in Rn×n can be expressed as a product
of elementary n × n matrices. In this section, we will prove a much more
explicit and general result: every n × n matrix A can be expressed in the
form A = LPDU , where each of the matrices L,P,D and U is built up from
a single type of elementary matrix. This LPDU factorization is one of the
most basic tools for understanding the properties of matrices. For example,
we will use it below to show that the reduced row echelon form of a matrix
is unique. It will also be important when we determine the signs of the
eigenvalues of an arbitrary symmetric matrix in Chapter 12. The LPDU
decomposition is an important theoretical tool for research in matrix theory,
and it is widely used for solving large systems of linear equations.

3.4.1 The Basic Ingredients: L, P, D and U

Let us now introduce the cast of characters in the LPDU decomposition.
First of all, a matrix A is called lower triangular if all the entries of A
strictly above the diagonal are zero. Put another way, aij = 0 if i < j. SIM-
ILARLY, A is upper triangular if its entries strictly below the diagonal are
zero. Clearly, the transpose of a lower triangular matrix is upper triangular
and vice versa. A square matrix A which is either upper or lower triangular
and such that each diagonal entry aii = 1 is called unipotent. In our cast, the
L’s will be lower triangular unipotent, and the U ’s will be upper triangular
unipotent.

Example 3.11. A lower triangular 3× 3 unipotent matrix has the form

L =

1 0 0
a 1 0
b c 1

 .

The transpose U = LT is

U =

1 a b
0 1 c
0 0 1

 .

One can easily check that

L−1 =

 1 0 0
−a 1 0

ac− b −c 1

 .
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Thus L−1 is also lower triangular unipotent.

Notice that a type III row operations where a row is replaced by itself
plus a multiple of a higher row is performed via left multiplication by a
lower triangular unipotent matrix. We will usually call these downward row
operations. Here is a basic fact.

Proposition 3.14. The class Ln of all lower triangular unipotent n × n
matrices is a subgroup of GL(n,R). Similarly, the class Un of all upper
triangular unipotent matrices is also a subgroup of GL(n,R).

Proof. It follows from the definition of matrix multiplication that the prod-
uct of two lower triangular matrices is also lower triangular. If A and B
are lower triangular unipotent, then the diagonal entries of AB are all 1.
Indeed, if AB = (cij), then

cii =
n∑
k=1

aikbki = aiibii = 1,

since aij = bij = 0 if i < j. The identity In is also lower triangular unipotent,
so to show Ln is a subgroup of GL(n,R), it remains to show that the in-
verse of a lower triangular unipotent matrix A is also in Ln. But this follows
since inverting a lower triangular unipotent matrix only requires downward
row operations. (Row swaps aren’t needed since A is lower triangular, and
dilations aren’t needed either since lower triangular unipotent matrices only
have 1’s on the diagonal.) Thus, A−1 is a product of lower triangular ele-
mentary matrices of type III. But these are elements of Ln, so A−1 is also
in Ln. The proof for Un is similar. In fact, one can simply transpose the
proof just given.

As just noted, every lower triangular unipotent matrix is the product of
downward row operations. Indeed, there exist E1, E2, . . . , Ek of this type
such that Ek · · ·E2E1L = In. Therefore, L = E−1

1 E−1
2 · · ·E−1

k . But the
inverse of each Ei is also a lower triangular elementary matrix of type III.
Hence, L = E−1

1 E−1
2 · · ·E−1

k . The analogous fact holds for upper triangular
unipotent matrices.

Continuing the introduction of the cast of characters, recall from Ex-
ample 3.9, that an n × n matrix which can be expressed as a product of
elementary matrices of type II (i.e. row swaps) is called a permutation ma-
trix. We’ve already seen that the set P (n) of n × n permutation matrices
is a matrix group, and, moreover, the inverse of a permutation matrix P
is P T . The n × n permutation matrices are exactly those matrices which
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can be obtained by rearranging the rows of In. We now make the following
definition:

Definition 3.6. An n × n matrix which is obtained from a permutation
matrix by replacing some of the 1s by 0s is called a partial permutation
matrix. The set of n× n partial permutation matrices is denoted by Πn.

Note that by definition, an invertible partial permutation matrix is a
permutation matrix. Note also that the product of two n×n partial permu-
tation matrices is also a partial permutation matrix. However, the partial
permutation matrices don’t form a matrix group (why?).

The last character D stands for a diagonal matrix. Recall a matrix
D = (dij) is called diagonal if and only if dij = 0 whenever i 6= j. Since
a diagonal matrix is invertible if and only if its diagonal entries dii are all
different from 0 and the product of two diagonal matrices is also diagonal,
the set of invertible diagonal matrices is a matrix subgroup of GL(n,R). We
will denote this matrix group by Dn.

3.4.2 The Main Result

We now arrive at the main theorem, which gives a normal form for an
arbitrary square matrix.
Theorem 3.15. Every n × n matrix A over R or F2 can be expressed in
the form A = LPDU , where L is lower triangular unipotent, P is a partial
permutation matrix, D is an invertible diagonal matrix, and U is upper
triangular unipotent. If A is invertible, then P is a full permutation matrix,
and P and D are unique. In fact, the partial permutation matrix P is unique
in all cases.

This result can be expressed in the product form

Rn×n = Ln ·Πn · Dn · Un.

That is, every n×n matrix is the product of the four types of matrices: Ln,
Πn, Dn and Un. Specializing to the invertible matrices, we have

GL(n,R) = Ln · P (n) · Dn · Un.

In particular, GL(n,R) is the product of its four subgroups: Ln, P (n), Dn
and Un. The F2 case is actually easier since there are only three types of
matrices involved.

The idea behind the proof is very simple. Starting from A, one do
downwaresd row operations on the left and rightward column operations on
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the right until all that is left of A is PD. Before reading the proof, the
reader may wish to look at the examples after the proof to see explicitly
what to do.

Proof. Let an arbitrary n× n A be given. If the first column of A consists
entirely of zeros, go immediately to the second column. Otherwise, let ai1be
the first nonzero entry in A’s first column. Perform a sequence of row
operations to make the entries below ai1 equal to zero. This transforms the
first column of A into

(0, . . . , 0, d1, 0, . . . , 0)T , (3.6)

where d1 = ai1. This reduction is performed by downward row operations:
in other words, by pre-multiplying A by a sequence of lower triangular el-
ementary matrices of type III. By Proposition 3.14, we therefore obtain a
lower triangular unipotent matrix L1 so that the first column of L1A has
the form (3.6). The next step is to use the first non zero entry d1 in the first
column to annihilate all the entries in the i-th row of A to the right of the
first column. Since post multiplying by elementary matrices performs col-
umn operations, this amounts to multiplying L1A on the right by a sequence
of upper triangular unipotent matrices. This produces an upper triangular
unipotent matrix U1 such that the first column of (L1A)U1 has the form
(3.6) and the i-th row is

(d1, 0, . . . , 0). (3.7)

We now have the first column and i-th row of A in the desired form and
from now on, they will be unchanged. If the first column of A is zero, we
will for convenience put L1 = U1 = In.

To continue, scan to the right until we find a nonzero column in L1AU1,
say this is the j-th. Let bkj be its first nonzero entry, and put dj = bkj .
Of course, k 6= i. Then we can find lower and upper triangular unipotent
matrices L2 and U2 such that the first and j-th columns of L2L1AU1U2

have the single nonzero entry d1 and dj , and the same holds for i-th and
k-th rows. Furthermore, the columns between the first and j-th columns,
if any, are all zero. Continuing, we eventually obtain a lower triangular
unipotent matrix L′ and an upper triangular unipotent matrix U ′ such that
each row and column of L′AU ′ has at most one nonzero entry.

Since multiplying a matrix B on the right by a diagonal matrix D multi-
plies the i-th column of B by dii, any matrix C with the property that every
row and column has at most one nonzero entry can be written C = PD,
where P is a partial permutation matrix and D is an invertible diagonal
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matrix. If C is invertible, then P is a full permutation matrix, and D and
P are unique. In fact, dii is the nonzero entry in C’s i-th column. If C is
singular, D isn’t unique. It follows that L′A′U = PD, where P is a partial
permutation matrix and D is a diagonal matrix.

We now show that the partial permutation matrix P is always unique.
Let A have two decompositions

A = L1P1D1U1 = L2P2D2U2 (3.8)

according to the Theorem. Then we can write

LP1D1 = P2D2U, (3.9)

where L = (L2)−1L1 and U = U2(U1)−1. As L is lower triangular unipotent
and U is upper triangular unipotent, LP1D1 can have nonzero elements
below a nonzero entry of P1, but no nonero entries to the right of a nonzero
entry of P1. The reverse is the case for P2D2U, so the only conclusion is that
LP1D1 = P1D1 and P2D2 = P2D2U. But this implies P1D1 = P2D2. Since
P1 and P2 are partial permutation matrices and D1 and D2 are invertible,
P1 and P2 have to coincide.

Finally, if A is invertible and A = LPDU , then P is invertible, so P is
a permutation matrix. We still have to show that if A is invertible, then
D is unique, Suppose (3.9) holds. Repeating the previous argument, we see
that P1D1 = P2D2. But P1 = P2 = P, and P is invertible, so it follows
immediately that D1 = D2.

Note that the above proof even gives an algorithm for finding the LPDU
factorization.

Example 3.12. To illustrate, let

A =

 0 2 −2
0 4 −5
−1 −2 −1

 .

Since the first non zero entry in the first column of A is a13 = −1, we can
put L1 = I3. Then next two steps are to subtract the first column twice
from the second and to subtract it once from the third. The result is

AU1 = L1AU1 =

 0 2 −2
0 4 −5
−1 0 0

 ,
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where

U1 =

1 −2 −1
0 1 0
0 0 1

 .

Next we subtract twice the first row from the second, which gives

L2L1AU1 =

 0 2 −2
0 0 −1
−1 0 0

 ,

where

L2 =

 1 0 0
−2 1 0
0 0 1

 .

Finally, we add the second column to the third, getting

L2L1AU1U2 =

 0 2 0
0 0 −1
−1 0 0

 ,

with

U2 =

1 0 0
0 1 1
0 0 1

 .

Now

U = U1U2 =

1 −2 −3
0 1 1
0 0 1

 .

Also,

PD =

0 1 0
0 0 1
1 0 0

−1 0 0
0 2 0
0 0 −1

 .

After computing L = (L2L1)−1 = L−1
2 and U = (U1U2)−1, we obtain the

LPDU factorization

A =

1 0 0
2 1 0
0 0 1

0 1 0
0 0 1
1 0 0

−1 0 0
0 2 0
0 0 −1

1 2 1
0 1 −1
0 0 1

 .

Here is another example.
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Example 3.13. Let A be the matrix

A =

1 0 1
1 0 0
0 1 1

 .

Then 1 0 0
1 1 0
0 0 1

A =

1 0 1
0 0 1
0 1 1

 .

Thus 1 0 0
1 1 0
0 0 1

A

1 0 1
0 1 0
0 0 1

 =

1 0 0
0 0 1
0 1 1

 .

Hence 1 0 0
1 1 0
0 0 1

A

1 0 1
0 1 0
0 0 1

1 0 0
0 1 1
0 0 1

 =

1 0 0
0 0 1
0 1 0

 .

This has the form LAU = P , so A = L−1PU−1, so the Example is complete
once L−1 and U−1 have been calculated. We leave this to the reader.

3.4.3 Further Uniqueness in LPDU

If A is invertible, the Theorem says that P and D in A = LPDU is unique.
The i-th diagonal entry dii of D is called the i-th pivot of A. It turns out
that the pivots of A have quite a bit of significance. (See Chapter 12.)

Example 3.14. Let A =
(
a b
c d

)
be invertible. That is, suppose ad− bc 6= 0.

If a 6= 0, then the LPDU decomposition of A is

A =
(

1 0
−c/a 1

)(
1 0
0 1

)(
a 0
0 (ad− bc)/a

)(
1 −b/a
0 1

)
.

However, if a = 0, then bc 6= 0 and A can be expressed either as

LPD =
(

1 0
d/b 1

)(
0 1
1 0

)(
c 0
0 b

)
or

PDU =
(

0 1
1 0

)(
c 0
0 b

)(
1 d/c
0 1

)
.

This tells us that, in general, L and U aren’t necessarily unique.
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3.4.4 Further Uniqueness in LPDU

If A is invertible, the Theorem says that P and D in A = LPDU is unique.
The i-th diagonal entry dii of D is called the i-th pivot of A. It turns out
that the pivots of A have quite a bit of significance. (See Chapter 12.)

The general two by two case occurs when a11 6= 0. Here, the permutation
matrix P turns out to be I2. In this case, A can be row reduced without row
swaps. For a general n×n A, a11 6= 0, since having a11 = 0 puts a condition
on A. Similarly, after putting the first column of A in the form (1, 0, . . . , 0)T ,
the new (2, 2) entry will in general still be nonzero. Continuing in this way,
we see that a sufficiently general matrix A will have permutation matrix
P = In. This is exactly the situation where A can be row reduced without
row swaps.

The next Proposition points out an extremely nice property of the gen-
eral case.

Proposition 3.16. If an invertible matrix A admits an LDU decomposition
(i.e. P = In), then the matrices L, D and U are unique.

Proof. We already know D is unique. So if A has two LDU decompositions,
we have

A = L1DU1 = L2DU2.

Thus
L−1

1 L2 = DU1U
−1
2 D−1. (3.10)

But in (3.10), the left hand side is lower triangular unipotent and the right
hand side is upper triangular, since D is diagonal. This tells us immediately
that L−1

1 L2 = In. Hence L1 = L2, so it also follows that U1U
−1
2 = D−1D =

In. Hence U1 = U2 too, and the proof is finished.

Going back to the 2 × 2 case considered in Example 3.14, the LDU
decomposition for A is therefore unique when a 6= 0 . We also pointed out
in the same example that if a = 0, then L and U are not unique, although
P and D are.

Now consider an n×n system Ax = b. If A is invertible, solving consists
of finding A−1. If we write A = LPDU , then A−1 = U−1D−1P−1L−1. In
theory, it is simpler to invert each of L,P,D and U and to multiply them
than to compute A−1 directly. Indeed, D−1 is easy to find, and P−1 = P T ,
so it boils down to computing L−1 and U−1, both of which are expressed
by simple formulas. In the non invertible case, we put x = (DU)−1y. The
system then becomes LPy = b, which is equivalent to Py = L−1b and
easily solved.
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With a linear system Ax = b, where A = LPDU is invertible, one can
avoid having to deal with the permutation matrix P. In fact, it is always
possible to post multiply A by another permutation matrix Q, suitably
concocted to move zero pivots out of the way by switching columns, so as
to get a matrix AQ which which has a factorization AQ = L′D′U ′. The
only affect on the system is renumbering the variables. As above, let y =
Q−1x = QTx. Then

Ax = A(QQ−1)x = A(QQT )x = (AQ)y = (L′D′U ′)y,

so we only have to solve (L′D′U ′)y = b.

3.4.5 The symmetric LDU decomposition

Suppose A is an invertible symmetric matrix which has an LDU decompo-
sition. Then it turns out that L and U are not only unique, but they are
related. In fact, U = LT . This makes finding the LDU decomposition very
simple. The reasoning for this goes as follows. If A = AT and A = LDU ,
then

LDU = (LDU)T = UTDTLT = UTDLT

sinceD = DT . Therefore the uniqueness of L,D and U implies that U = LT .
The upshot is that to factor A = LDU in the general symmetric case,

all one needs to do is perform downward row operations on A until A is
upper triangular.This is expressed by the equality L′A = B, where B is
upper triangular. Then B = DU , where D is the diagonal matrix such that
dii = bii for all indices i, and (since all the bii are nonzero) U = D−1B. Thus
by construction, U is upper triangular unipotent, and we have A = LDU ,
where L = UT by the result proved in the previous paragraph.

Example 3.15. Consider the symmetric matrix

A =

1 1 1
1 3 −1
1 −1 2

 .

First bring A into upper triangular form, which is our DU . Doing so, we
find that A reduces to

DU =

1 1 1
0 2 −2
0 0 −1

 .
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Hence

D =

1 0 0
0 2 0
0 0 −1

 and U =

1 1 1
0 1 −1
0 0 1

 .

Thus A = LDU where U is as above, L = UT and D = diag(1, 2,−1).

Summarizing, we state

Proposition 3.17. If A is an (invertible) n × n symmetric matrix whose
LPDU decomposition has P = In, then A can be uniquely factored in the
form A = LDLT .

The interested reader may wish to consider what happens when an in-
vertible symmetric matrix A has zero pivots (see Exercise 3.60).

3.4.6 LPDU and Reduced Row Echelon Form

The purpose of this Section is to relate the LPDU decomposition of A to
its reduced row echelon form. We will ultimately show that the reduced row
echelon form of A of an arbitrary m× n matrix is unique. Let us make a
series of observations.
Observation 1. It is enough to assume m = n. Indeed, if m < n, one can
make A n× n by adjoining n−m rows of zeroes at the bottom of A, and if
n < m, one can adjoin m− n columns of zeroes on the right of A.
Observation 2. If A = LPDU , then the nonzero columns of P are exactly the
columns where A has a corner. This follows from comparing the algorithm
for row reducing A with the method for finding the LPDU factorization.
Observation 3. Suppose the rows of the partial permutation matrix P are
permuted to get a partial permutation matrix Q whose first k rows are
nonzero, where k is the number of ones in P . Then QDU is reduced (but is
not necessarily in reduced row echelon form), where D and U are the same
as in LPDU .
Observation 4. Any reduced row echelon form of A has the form QU ′ for
some upper triangular unipotent matrix U ′. For we can write QD = D′Q
for some (invertible) diagonal matrix D′. Then replacing D′ by In is the
same thing as making the corner entries all ones.

Now we show

Proposition 3.18. The reduced row echelon form of an m × n matrix is
unique. In particular, the rank of a matrix is well defined.

Proof. As noted in Observation 1, we can restrict ourselves to n×n matrices
A. By post multiplying A by a suitable permutation matrix, say R, we may
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assume that the matrix Q in Observation 3 has the form Q =
(
Ik 0
0 0

)
.

Thus any matrix in reduced row echelon form obtained from AR has the
form (

Ik a
O1 O2

)
,

where a is k × (n − k), O1 is the (n − k) × k zero matrix and O2 is the
(n− k)× (n− k) zero matrix. Suppose(

Ik b
O1 O2

)
is another such matrix obtained from A by row operations. Then there
exists a nonsingular n× n matrix G such that

G

(
Ik a
O1 O2

)
=
(
Ik b
O1 O2

)
.

Now write

G =
(
J K
L M

)
,

where J is k×k, K is k× (n−k), L is k× (n−k) and M is (n−k)× (n−k).
Carrying out the multiplication, we see that JIk = Ik and Ja = b. But
this means a = b, so the reduced row echelon form of AR is indeed unique.
It follows that the reduced row echelon form of A is also unique, since the
reduced row echelon form of A is just BR−1, where B is the reduced row
echelon form of AR. It also follows immediately that the rank of A is
uniquely defined.

Thus if A = LPDU , then the rank of A is the rank of its partial permu-
tation matrix P . This leads to an interesting, even surprising, Corollary.
Corollary 3.19. For any matrix A, the rank of A equals the rank of AT .

We’ll leave the proof as an Exercise.
The reason this Corollary is surprising is that there isn’t any obvious

connection between the reduced row echelon form of A and that of AT .
Nevertheless, we’ve done a lot of work to get the LPDU factorization, so
we should expect some payoffs. Another quite different proof of Proposition
3.18 is given in Chapter 5.
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Exercises

Exercise 3.48. Find the LPDU decompositions of the following matrices:0 1 1
2 0 1
1 1 0

 ,

0 0 3
0 2 1
1 1 1

 ,

1 0 1
0 2 −1
1 −1 0

 .

Exercise 3.49. Find the LPDU factorization of the F2 matrix

A =


1 1 1 0
1 0 1 1
1 1 0 0
0 1 1 1

 .

Exercise 3.50. Find the LPDU factorization of the F2 matrix

A =


1 1 1 0
1 0 1 1
1 1 0 0
0 1 1 1

 .

Exercise 3.51. Let

A =

1 a b
0 1 c
0 0 1

 .

Find a formula expressing A as a product of upper triangular elementary
matrices of type III.

Exercise 3.52. Find the general formula for the inverse of the general 4×4
upper triangular unipotent matrix

U =


1 a b c
0 1 d e
0 0 1 f
0 0 0 1

 .

Exercise 3.53. Show directly that an invertible upper triangular matrix
B can be expressed B = DU , where D is a diagonal matrix with non zero
diagonal entries and U is upper an triangular matrix all of whose diagonal
entries are ones. Is this still true if B is singular?
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Exercise 3.54. Find the LPDU decomposition of
0 1 2 1
1 1 0 2
2 0 0 1
1 2 1 0

 .

Exercise 3.55. Find a 3 × 3 matrix A such that the matrix L in the A =
LPDU decomposition isn’t unique.

Exercise 3.56. Let A be n× n, say A = LPDU . Show how to express the
LPDU decomposition of AT .

Exercise 3.57. Assume A is symmetric and has an LDU decomposition.
Show that if all the diagonal entries of D are non-negative, then A can be
written A = CCT , where C is lower triangular. This expression is called the
Cholesky decomposition of A. The Cholesky decomposition is frequently
used in biostatistics, where A may typically be at least 5000× 5000.

Exercise 3.58. Find the LDU decomposition of the matrix

A =

1 1 1
1 −1 0
2 0 0

 .

Exercise 3.59. Write each of the matrices
1 1 2 1
1 −1 0 2
2 0 0 1
1 2 1 −1

 and


0 0 0 1
0 0 2 2
0 2 4 4
1 2 4 −3


in the form LPDU where U = LT .

Exercise 3.60. Prove the following:
Proposition 3.20. Let A be a symmetric invertible matrix. Then there
exists an expression A = LPDU with L,P,D,U as usual such that :

(i) U = LT ,

(ii) P = P T = P−1, and

(iii) PD = DP .
Conversely, if L,P,D,U satisfy the above three conditions, then LPDU is
symmetric.
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Exercise 3.61. Let P be a partial permutation matrix. Show that the rank
of P equals the rank of P T . (Hint: how is the rank related to the number
of 1s?)

Exercise 3.62. Let A be n×n and write A = LPDU . Show that the rank
of A is the same as the rank of P . Deduce from this that the rank of A is
the rank of AT . (Hint: the rank of LPDU is the same as the rank of PDU .
But DU is upper triangular of rank n. If the ith row of P is zero, then so
is the ith row of PDU. This implies P and PDU have the same rank.)

Exercise 3.63. If A is nonsingular, what is the rank of AB? How about
BA?

Exercise 3.64. True or False: If A and B are n × n, then AB and BA
have the same rank. Explain your reasoning. For example, if F give a
counter-example.
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3.5 Summary

We began this Chapter with the notion of matrix multiplication. To form
the product AB, the number of rows of B must be the same as the number
of columns of A. We saw that matrix multiplication is associative. We
introduced elementaary matrices and showed that left multiplication by an
elementary matrix performs a row operation. Thus matrices can be row
reduced by pre-multiplication by elementary matrices. This leads naturally
to the notion of the inverse of an n× n matrix A, which is a matrix B such
that AB = BA = In. We saw BA = In is enough to guarantee AB = In
also, and we also saw that the invertible n × n matrices are exactly those
of rank n. A key fact is that a square linear system Ax = b with invertible
coefficient matrix has the unique solution x = A−1b.

After discussing inverses, we introduced matrix groups, or as they are
also known, linear groups, and gave several examples. We then applied the
notion of a matrix group to find way of factoring an arbitrary matrix into the
form LPDU . This is an often used method both in applied mathematics,
for solving large systems, and in pure mathematics, in the study of matrix
groups and other branches of algebra.
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Chapter 4

Fields and Vector Spaces

In the first two chapters, we considered linear equations and matrices over
the reals. We also introduced the off-on field F2 = {0, 1}, where 1 + 1 = 0,
to give an example where we can solve linear systems and invert matrices
without having to rely on the real numbers. We will begin this chapter with
the introduction of the general notion of a field, which generalizes both the
reals R and F2. This will immediately give us a whole new way considering
of matrices, matrix algebra and, of course, linear systems.

Our second goal here is to introduce the notion of an abstract vector
space, which generalizes both the set of all real n-tuples Rn and the set of
all n-bit strings (F2)n. We will make a few other general definitions, and,
finally, conclude by considering a special class of vector spaces known as
inner product spaces.

4.1 What is a Field?

The goal of this section is to define the notion of a field and to give some of
the basic examples: the rational numbers, the smallest field containing the
integers, the real numbers and the complex numbers, unquestionably the
most important of all the fields we will consider. We will also introduce the
prime fields Fp. These are the finite fields defined by arithmetic modulo a
prime p.

4.1.1 The Definition of a Field

Since algebra is the business of solving equations, let’s consider the most
trivial equation ax = b. First consider what happens if a and b are elements

75
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of the integers Z, say a = 4 and b = 3. Thus we want to solve the equation
4x = 3. The algebraic operation we use for solving this problem is, of course,
known as division, and it expresses x as 3/4. This is the only solution, so
we have to go outside of the of the integers to find a solution. Thus we
introduce fractions, or quotients of integers.

The quotient r/s, where r, s are integers and s 6= 0 is called a rational
number . The set of all rational numbers will be denoted by Q, which reminds
us of the term quotient. Two rationals r/s and u/v are equal if there is an
integer k such that r = ku and s = kv. Addition and multiplication in Q
are defined by:

a

b
+
c

d
=
ad+ bc

bd
, (4.1)

and
a

b
· c
d

=
ac

bd
. (4.2)

Clearly the sum and product of two rational numbers is a well defined ra-
tional number (since bd 6= 0 if b, d 6= 0).

The same problem would occur if we were given the less trivial job of
solving a system of linear equations over the integers such as

ax+ by = m

cx+ dy = n,

where a, b, c, d,m, n are all integers. Using Gaussian reduction to arrive at
a solution, we will find that if ad− bc 6= 0, then

x =
dm− bn

ad− bc

y =
−cm+ an

ad− bc
.

is a unique solution. Once again the rationals are needed.
More generally, solving any linear system addition, subtraction, multi-

plication and division. A field will be a set which has these four algebraic
operations provided they satisfy certain other properties we haven’t men-
tioned yet.

We will first define the notion of a binary operation. Addition and mul-
tiplication on the integers are two basic examples of binary operations. Let
S be any set, finite or infinite. The Cartesian product of S with itself is the
set S×S of all ordered pairs (x, y) of elements x, y ∈ S. Note, we call (x, y)
an ordered pair to emphasize that (x, y) 6= (y, x) unless x = y. Thus,

S × S = {(x, y) | x, y ∈ S}.
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Definition 4.1. A binary operation on S is a function F with domain S×S
which takes its values F (x, y) in S.

The notation for a function, or equivalently a mapping, F whose domain
is a set A whose values are in a set B is F : A→ B. Thus an operation is a
function F : S×S → S. We will often express a binary operation by writing
something like x · y or x ∗ y for F (x, y). So, for example, the operation of
addition on Z is a function S : Z × Z → Z defined by S(m,n) = m + n.
We also need the notion of a subset being closed with respect to a binary
operation.

Definition 4.2. Let F be a binary operation on a set S. A subset T of S
such that F (x, y) ∈ T for allwhenever x, y ∈ T is said to be closed under the
binary operation.

For example, the positive integers are closed under both addition and
multiplication. The odd integers are closed under multiplication, but not
closed under addition since, for instance, 1 + 1 = 2.

We now state the definition of a field.

Definition 4.3. Assume F is a set with two binary operations which are
called addition and multiplication. The sum and product of two elements
a, b ∈ F will be denoted by a+ b and ab respectively. Suppose addition and
multiplication satisfy the following properties are satisfied for all a, b, c ∈ F:

(i) a+ b = b+ a (addition is commutative);

(ii) (a+ b) + c = a+ (b+ c) (addition is associative);

(iii) ab = ba (multiplication is commutative);

(iv) a(bc) = (ab)c (multiplication is associative);

(v) a(b+ c) = ab+ ac (multiplication is distributive);

Suppose further that

(vi) F contains an element 0 called the additive identity such that a+0 = a
and an element 1 called the multiplicative identity such that 1a = a
for all a ∈ F;

(vii) 0 6= 1;

(viii) for every a ∈ F, there is an element −a called the additive inverse of
a such that a+ (−a) = 0; and
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(ix) for every a 6= 0 in F, there is an element a−1, called the multiplicative
inverse of a such that aa−1 = 1.

Then F is called a field.

We will write a− b for a+ (−b). In particular, a− a = 0. In any field F,

a0 = a(0 + 0) = a0 + a0,

For adding −a0 to both sides and using the associativity of addition, we get

0 = a0− a0 = (a0 + a0)− a0 = a0 + (a0− a0) = a0 + 0 = a0.

Hence
a0 = 0

for all a ∈ F. The converse of this fact is one of the most important properties
of a field.
Proposition 4.1. Let F be a field. Then a0 = 0 for all a ∈ F. Moreover,
whenever ab = 0, either a = 0 or b = 0. Put another way, if neither a nor b
is zero, then ab 6= 0.

Proof. The first claim was just proven. For the second claim, suppose ab = 0
but a 6= 0. Then

0 = a−10 = a−1(ab) = (a−1a)b = 1b = b.

Hence b = 0, which completes the proof.

The property that ab = 0 implies either a = 0 or b = 0 will be used
repeatedly. Another basic fact is
Proposition 4.2. In any field F, the additive and multiplicative identi-
ties are unique. Moreover, the additive and multiplicative inverses are also
unique.

Proof. To show 0 is unique, suppose 0 and 0′ are two additive identities. By
definition,

0′ = 0′ + 0 = 0

so 0 is indeed unique. The proof that 1 is unique is similar. To see addi-
tive inverses are unique, let a ∈ F have two additive inverses b and c. By
associativity,

b = b+ 0 = b+ (a+ c) = (b+ a) + c = 0 + c = c.
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Thus b = c. The proof for multiplicative inverses is similar.

It follows from the uniqueness that for all a ∈ F,

−a = (−1)a.

For
0 = 0a = (1− 1)a = 1a+ (−1)a.

4.1.2 Arbitrary Sums and Products

In a field, we can take the sum and product of any finite collection of el-
ements. However, we have to say how to define and interpret expressions
such as

k∑
i=1

xi and
k∏
i=1

xi.

Suppose we want to define the sum x1 +x2 + · · ·+xn of n arbitrary elements
of a field F. We accomplish this with mathematical induction. The sum
or product of one element is unambiguously defined. So suppose the sum
x1 + x2 + · · ·+ xn−1 has been unambiguously defined. Then put

x1 + x2 + · · ·+ xn−1 + xn = (x1 + x2 + · · ·+ xn−1) + xn.

Likewise, put
x1x2 · · ·xn = (x1x2 · · ·xn−1)xn.

Then it follows from induction that the sum and product of any number of
elements is well defined. In fact, in the above sum and product, the parens
can be put anywhere, as we now show.
Proposition 4.3. In any field F,

x1 + x2 + · · ·+ xn−1 + xn =
( r∑
i=1

xi
)

+
( n∑
i=r+1

xi
)
, (4.3)

for any r with 1 ≤ r < n. Similarly,

x1x2 · · ·xn =
( r∏
i=1

xi
)( n∏

j=r+1

xj
)
, (4.4)

for all r with 1 ≤ r ≤ n − 1. Moreover, the sum and product on the left
hand side of (4.3) and (4.4) respectively can be reordered in any manner.
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Proof. We will give the proof for sums and leave products to the reader, as
the details in both cases are the same. We use induction on n. There is
nothing to show for n = 1, so suppose n > 1 and the result is true for n− 1.
If r = n− 1, there is also nothing to show. Thus assume r < n− 1. Then

x1 + x2 + · · ·+ xn−1 + xn = (x1 + x2 + · · ·+ xn−1) + xn

=
( r∑
i=1

xi +
n−1∑
j=r+1

xj
)

+ xn

=
r∑
i=1

xi +
( n−1∑
j=r+1

xj + xn
)

=
( r∑
i=1

xi
)

+
( n∑
j=r+1

xj
)

Hence the result is true for n, which completes the proof.
To see that the left hand side of (4.3) can we written in any order, let

y1, y2, . . . , yn be any reordering. Here n > 1 since otherwise. there’s nothing
to prove. Assume the result holds for n− 1. Now yn = xk for some index k,
and we can assume k < n. By the first argument,

x1 + x2 + · · ·+ xn = (x1 + · · ·+ xk) + (xk+1 + · · ·+ xn)
= (xk+1 + · · ·+ xn) + (x1 + · · ·+ xk)
= (xk+1 + · · ·+ xn + x1 + · · ·+ xk−1) + xk

= (xk+1 + · · ·+ xn + x1 + · · ·+ xk−1) + yn

= (y1 + · · ·+ yn−1) + yn

= y1 + · · ·+ yn−1 + yn.

The next to last step uses the induction hypothesis since y1, y2, . . . , yn−1

forms a rearrangement of x1, . . . , xk−1, xk+1, . . . , xn.

4.1.3 Examples

We now give some examples.

Example 4.1 (Q). The fact that the rationals satisfy all the field axioms is a
consequence of the basic arithmetic properties of the integers: associativity,
commutativity and distributivity and the existence of 0 and 1. Indeed, all
one needs to do is to use (4.1) and (4.2) to prove the field axioms for Q from
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these properties of the integers. Note that the integers Z are not a field,
since field axiom (viii) isn’t satisfied by Z. The only integers which have
multiplicative inverses are ±1.

Example 4.2 (R). The second example of a field is the set of real numbers
R. The construction of the real numbers is actually somewhat technical, so
we won’t try to explain it. For most purposes, it suffices to think of R as
being the set of all decimal expansions

±a1a2 · · · ar.b1b2 · · · ,

where all ai and bj are integers between 0 and 9 and a1 6= 0. Note that
there can be infinitely many bj to the right of the decimal point. We also
have to make appropriate identifications for repeating decimals such as 1 =
.999999 . . . . A very useful property of the reals is the fact that they have
an ordering > such that any real number x is either positive , negative or 0,
and the product of two numbers with the same sign is positive. This makes
it possible to solve linear inequalities such as a1x1 + a2x2 + · · ·+ anxn > c.
The reals also have the Archimedean property: if a, b > 0, then there exists
an x > 0 so that ax > b. In other words, linear inequalities have solutions.

Example 4.3 (F2). The field F2 consisting of 0 and 1 was introduced in
the previous chapter. The condition 1 + 1 = 0 is forced on us, for 1 + 1 = 1
would give 1 = 0, violating the definition of a field. However, we haven’t
completely verified the field axioms for F2 since associativity hasn’t been
fully verified. We wll leave this as an exercise.

Another of the basic fields is C, the complex numbers, but we will post-
pone discussing it until the next section.

4.1.4 An Algebraic Number Field

Many examples of fields arise by extending a given field. We will now give
an example of a field called an algebraic number field which is obtained by
adjoining the square root of an integer to the rationals Q. In order to explain
this example, let us first recall the
Theorem 4.4 (Fundamental Theorem of Arithmetic). Let m be an integer
greater than 1. Then m can be factored m = p1p2 · · · pk, where p1, p2, . . . , pk
are primes. Moreover, this factorization is unique up to the order of the
factors.

Recall that a positive integer p is called prime if p > 1 and its only
positive divisors are 1 and itself. For a proof of the Fundamental Theorem
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of Arithmetic, the reader is referred to a text on elementary number theory.
We say that a positive integer m is square free if its prime factorization has
no repeated factors. For example, 10 = 2 · 5 is square free while 12 = 4 · 3
isn’t.

Let m ∈ Z be positive and square free, and let Q(
√
m) denote the set of

all real numbers of the form a+ b
√
m, where a and b are arbitrary rational

numbers. It is easy to see that sums and products of elements of Q(
√
m) are

also elements of Q(
√
m). Clearly 0 and 1 are elements of Q(

√
m). Hence,

assuming the field axioms for Q allows us to conclude without any effort
that all but one of the field axioms are satisfied in Q(

√
m). We still have to

prove that any non zero element of Q(
√
m) has a multiplicative inverse.

So assume a + b
√
m 6= 0. Thus at least one of a or b is non zero. It

suffices to assume the a and b are integers without common prime factors;
that is, a and b are relatively prime . The trick is to notice that

(a+ b
√
m)(a− b

√
m) = a2 −mb2.

Hence, if a2 −mb2 6= 0, then

1
a+ b

√
m

=
a− b

√
m

a2 −mb2
,

so(a+ b
√
m)−1 exists in R and by definition is an element of Q(

√
m).

To see that indeed a2 −mb2 6= 0, suppose not. Then

a2 = mb2.

This implies that m divides a2, hence any prime factor pi of m has to divide
a itself. In other words, a = cm for some m ∈ Z. Hence c2m2 = mb2, so
b2 = mc2. Repeating the argument, we see that m divides b. This implies
that the original assumption that a and b are relatively prime is violated, so
a2 −mb2 6= 0. Therefore we have proven
Proposition 4.5. If m is a square free positive integer, then Q(

√
m) is a

field.

The field Q(
√
m) is in fact the smallest field containing both the rationals

Q and
√
m.
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Exercises

Exercise 4.1. Prove that in any field (−1)a = −a.

Exercise 4.2. Show directly that F = {a + b
√

2 | a, b ∈ Q} is a field
under the usual operations of addition and multiplication in R. Also, find
(1−

√
2)−1 and (3− 4

√
2)−1.

Exercise 4.3. Let Z denote the integers. Consider the set Q of all pairs
(a, b) where a, b ∈ Z and b 6= 0. Consider two pairs (a, b) and (c, d) to be
the same if ad = bc. Now define operations of addition and multiplication
on Q as follows:

(a, b) + (c, d) = (ad+ bc, bd) and (a, b)(c, d) = (ac, bd).

Show that Q is a field. Can you identify Q?
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4.2 The Integers Modulo a Prime p

Let p denote an arbitrary prime. The purpose of this section is to define a
field Fp with p elements for every prime p.

Let us first make a definition.

Definition 4.4. A field with only a finite number of elements is called a
Galois field. A field with a prime number of elements is known as a prime
field.

Since every field has to contain at least two elements, the simplest ex-
ample of a Galois field is F2. Of course, F2 is also a prime field. To define
a field Fp with p elements for any p > 1, we will use modular arithmetic, or
arithmetic modulo p.

Everyone knows how to tell time, which is an example of using addition
modulo 12. The thirteenth hour is 1pm, the fourteenth is 2pm and so forth.
Arithmetic modulo p is addition and multiplication in which all that is used
are remainders after division by p.

To begin, put
Fp = {0, 1, 2, . . . , p− 1}. (4.5)

The elements of Fp are integers, but they should be thought of as remainders.
The way we will add them is as follows. If a and b in Fp, first take their
sum in the usual way to get the integer a + b. If a + b < p, then we define
the sum a + b in Fp to be a + b. But, if a + b ≥ p, we use division with
remainder. This is the principle explained in the next Proposition.

Proposition 4.6. Suppose a and b are non-negative integers with b 6= 0.
Then one can uniquely express a as a = qb + r, where q is a non-negative
integer and 0 ≤ r < b.

Proof. If a < b, put r = a, and if a = b, put r = 0. If a > b, some positive
multiple sb of b satisfies sb > a. Let s be the least positive integer such
that this happens. Here we are using the fact that every non-empty set of
positive integers has a least element. Put q = s− 1. Thus a = qb+ (a− qb),
so we are done if we show that r = a − qb satisfies 0 ≤ r < b. Now
a− qb = a− (s− 1)b ≥ 0 by definition. Also a− qb = (a− sb) + b < b since
a < sb. Thus 0 ≤ r < b, so the proof is finished.

Thus, if a+ b ≥ p, write

a+ b = qp+ r,
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where q is a nonnegative integer and r is an integer such that 0 ≤ r <
p. Then the sum of a and b in Fp is defined to be r. This operation is
called addition modulo p. It is a special case of modular addition. To define
the product of a and b in Fp, we use the remainder upon dividing ab by
p in exactly the same way. Note that 0 and 1 are clearly additive and
multiplicative identities.

Example 4.4. Let’s carry out the definitions of addition and multiplication
in F3 = {0, 1, 2}. Of course, 0 and 1 are always the identities, so all sums and
products involving them are determined. To completely determine addition
in F3, we only have to define 1 + 1, 1 + 2 and 2 + 2. First of all, 1 + 1 < 3,
so by definition, 1 + 1 = 2. To find 2 + 2, first take the usual sum 4, then
express 4 = 3 + 1 as in Proposition 4.6. The remainder is 1, so 2 + 2 = 1
in F3. Similarly, 1 + 2 = 0 in F3. Thus −2 = 1 and −1 = 2. To find all
products, it remains to find 2 ·2. But 2 ·2 = 4 in usual arithmetic, so 2 ·2 = 1
in F3. Thus 2−1 = 2. A good way to summarize addition and multiplication
is to construct addition and multiplication tables. The addition table for F3

is
+ 0 1 2
0 0 1 2
1 1 2 0
2 2 0 1

We suggest that the reader construct the multiplication table for F3.

With the above definitions of addition and multiplication, we can prove

Theorem 4.7. If p is a prime, then Fp, as defined above, is a field.

We will skip the proofs that addition and multiplication are commuta-
tive, associative and distributive. The existence of additive inverses is easy
to see; the inverse of a is p− a. We have already noted that 0 and 1 are the
identities, and clearly 0 6= 1. The rest of the proof involves showing that
multiplicative inverses exist. This will require the basic facts about the inte-
gers stated above and an interesting diversion into some of the combinatorics
of finite sets, namely the Pigeon Hole Principle.

Let us first make a general definition.

Definition 4.5. Let X and Y be sets, and let φ : X → Y be a mapping.
The set X is called the domain of φ and Y is called the target of φ. The
mapping φ is called one to one or injective if φ(x) = φ(x′) implies x = x′.
If every y ∈ Y has the form y = φ(x) for some x ∈ X. then φ is said to be
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onto or surjective. In other words, φ is surjective if the image of φ

φ(X) = {φ(x) | x ∈ X} ⊂ Y

of φ is Y . If φ is both injective and surjective, then φ is said to be a bijection.
A bijection is also called a one to one correspondence.

If X is finite, the number of elements of X is denoted by |X|.
Proposition 4.8 (The Pigeon Hole Principle). Let X and Y be finite sets
with |X| = |Y |, and suppose φ : X → Y is a map. If φ is either injective or
surjective, then φ is a bijection.

Proof. If φ is injective, then X and its image φ(X) have the same number of
elements. But this implies φ(X) = Y , so φ is surjective, hence a bijection.
On the other hand, suppose φ is surjective, i.e. φ(X) = Y . Then |X| ≥ |Y |.
But if φ(x) = φ(x′) where x 6= x′, then in fact |X| > |Y |. This contradicts
the assumption that |X| = |Y |, hence φ is a bijection.

We now return to the proof that every nonzero element a of Fp has an
inverse a−1. First, we show multiplication in Fp satisfies the conclusion of
Proposition 4.1:
Proposition 4.9. Let p be a prime number. If ab = 0 in Fp, then either
a = 0 or b = 0 (or both).

Proof. Since ab = 0 in Fp is the same thing as saying that p divides the
usual product ab in Z, the Proposition follows from the fact that if the prime
number p divides ab, then p divides a or p divides b. This is an immediate
consequence of the Fundamental Theorem of Arithmetic (Theorem 4.4).

This Proposition implies that multiplication by a fixed non-zero element
a ∈ Fp induces an injective map

φa : Fp \ {0} −→ Fp \ {0}
x 7−→ ax

Here Fp \{0} is the set Fp without 0. To see that φa is injective, let φa(x) =
φa(y), that is ax = ay. Thus a(x − y) = 0, so x − y = 0 since a 6= 0
(Proposition 4.9). Therefore φa is indeed injective. Since Fp \ {0} is a finite
set, the Pigeon Hole Principle says that φa is a bijection. In particular, there
exists an x ∈ Fp \{0}, such that ax = 1. Hence we have shown the existence
of an inverse of a.

If we relax the definition of a field by not assuming multiplicative inverses
exist, the resulting system is called a ring. Every field is a ring, but there
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exist rings such as the integers which aren’t fields. For another example,
consider Z4 to be {0, 1, 2, 3} with addition and multiplication modulo 4.
Then Z4 is a ring, but not a field since 2 · 2 = 0 in Z4 (hence 2 is not
invertible). In fact, if q is a composite number, then the ring Zq (defined in
an analogous way) is a not a field. Note that the integers Z also form a ring
which is not a field.

4.2.1 A Field with Four Elements

To show there exist fields that aren’t prime fields, we will now construct
a field F = F4 with 4 elements. The method is to simply explicitly write
down F’s addition and multiplication tables. Let 0, 1, α, and β denote the
elements of F. The addition table is defined as follows. (Note that we have
ignored addition by 0.)

+ 1 α β

1 0 β α
α β 0 1
β α 1 0

The multiplication table (omitting the obvious cases 0 and 1) is

· α β

α β 1
β 1 α

Then we have
Proposition 4.10. The set F4 = {0, 1, α, β} having 0 and 1 as identities
and addition and multiplication defined as above is a field.

The verification that F4 satifies the field axioms can be done by hand,
and so we will omit it. A general way of constructing the Galois fields will
be given in a later chapter.

Since α2 = β and β2 = α, it follows that α3 = β3 = 1. Hence α4 = α and
β4 = β, so all elements of F4 satisfy the equation x4 − x = 0 since 0 and 1
trivially do. Now by Section 4.12 below, we can view x4−x as a polynomial
in a variable x over the field F2, where we have the identity x4−x = x4 +x.
Thus, we can factor x4 − x = x(x+ 1)(x2 + x+ 1) (remember 1 + 1 = 0 so
2x = 2x2 = 0). The elements α and β are the roots of x2 + x+ 1 = 0. We
will give appropriate generalizations of these statements for all Galois fields
in a later chapter.

We will prove in the next chapter that the number of elements in a Galois
field F is always a power of a prime, i.e. is pn for some prime p. This prime
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is called the characteristic of the field and is the topic of the next section.
In fact, it will be shown later that for every prime p and integer n > 0,
there eists a Galois field with pn elements, and any two Galois fields with
the same number of elements are essentially the same.

4.2.2 The Characteristic of a Field

If F is a finite field, then some positive multiple r of the identity 1 ∈ F has
to be 0. Indeed, the positive multiples r1 of 1 can’t all be different, so there
have to be an m > 0 and n > 0 with say m > n such that m1 = n1 in F. But
this implies r1 = 0 with r = m− n. I claim that the least positive integer r
such that r1 = 0 is a prime. For if r can be expressed as a product r = st,
where s, t are integers greater than 1, then r1 = (st)1 = (s1)(t1) = 0. As F
is a field, it follows that either s1 = 0 or t1 = 0, contradicting the choice of
r. Therefore r is a prime. We now make the following definition:

Definition 4.6. Let F be an arbitrary field. If q1 = 0 for some positive
integer q, then, we say that F has positive characteristic. In that case, the
least such q, which we showed above to be a prime, is called the characteristic
of F. If q1 6= 0 for all q > 0, we say F has characteristic 0.

To summarize, we state
Proposition 4.11. If a field F has positive characteristic, then its charac-
teristic is a prime p, and pa = 0 for all a ∈ F.

Proof. We already proved that if the characteristic of F is nonzero, then it’s
a prime. If p1 = 0, then pa = p(1a) = (p1)a = 0a = 0 for all a ∈ F.

Example 4.5. The characteristic of Fp is p. The characteristic of the field
F4 of Example 4.2.1 is 2.

Proposition 4.12. The characteristics of Q, R and C are all 0. Moreover,
the characteristic of any subfield of a field of characteristic 0 is also 0.

The notion of the characteristic has a nice application.
Proposition 4.13. If F is a field of characteristic p > 0, then for any
a1, . . . , an ∈ F,

(a1 + · · ·+ an)p = ap1 + · · ·+ apn.

This can be proved by induction using the Binomial Formula, which says
that if x and y are commuting variables and n is a positive integer,

(x+ y)n =
n∑
i=0

(
n

i

)
xn−iyi, (4.6)
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where (
n

i

)
=

n!
(n− i)!i!

.

Another application of the characteristic is:

Proposition 4.14. For every non zero a ∈ Fp, ap−1 = 1. In particular,
a−1 = ap−2.

Proof. This is an exercise.

Example 4.6. For example, suppose we want to compute the inverse of
5 in F23. If you have a calculator handy, then you will see that 521 =
476837158203125, which is congruent to 14 modulo 23. Thus, 5−1 = 14.

4.2.3 Connections With Number Theory

Proposition 4.14 implies a basic result in number theory (and conversely).
First, we state the definition of a congruence.

Definition 4.7. Let a, b, c be integers. Then we say a is congruent to b
modulo c if a− b is divisible by c.

The congruence is expressed by writing a ≡ b mod c. Stating Proposition
4.14 in terms of congruences gives a classical result due to Fermat.

Theorem 4.15 (Fermat’s Little Theorem ). Suppose p > 1. Then for any
integer a 6≡ 0 mod p, a(p−1) ≡ 1 mod p.

There are further connections between properties of prime fields and
elementary number theory. For any integers a and b which are not both 0,
let d > 0 be the largest integer which divides both a and b. We call d the
greatest common divisor of a and b. The greatest common divisor, or simply,
gcd of a and b is traditionally denoted (a, b). For example, (4, 10) = 2. A
basic fact about the gcd proved in any book on number theory is

Proposition 4.16. Let a and b be integers which are not both 0, and let
d be their gcd. Then there exist integers u and v such that au + bv = d.
Conversely, if there exist integers u and v such that au + bv = d, then
d = (a, b).

Definition 4.8. Let a, b, c be integers. Then we say a is congruent to b
modulo c if a− b is divisible by c. If a is congruent to b modulo c, we write
a ≡ b mod c.
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The following result gives another proof that non-zero elements of Fp
have multiplicative inverses.
Proposition 4.17. Let a, b, q be positive integers. Then the congruence
equation ax ≡ 1 mod q has a solution if and only if (a, q) = 1.

Fermat’s Little Theorem suggests that one way to test whether m is
prime is to see if a(m−1) ≡ 1 mod m for a few well chosen integers a. This
doesn’t give a foolproof test, but it is very good, and in fact it serves as the
basis of the of some of the recent research in number theory on the topic of
testing for primeness.
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Exercises

Exercise 4.4. Prove that in any field (−1)a = −a.

Exercise 4.5. Show directly that F = {a + b
√

2 | a, b ∈ Q} is a field
under the usual operations of addition and multiplication in R. Also, find
(1−

√
2)−1 and (3− 4

√
2)−1.

Exercise 4.6. Describe addition and multiplication for the field Fp having
p elements for p = 5. That is, construct addition and multiplication tables
for F5. Check that every element a 6= 0 has a multiplicative inverse.

Exercise 4.7. Construct addition and multiplication tables for F7, and use
them to find both −(6 + 6) and (6 + 6)−1 in F7.

Exercise 4.8. Let F be a field and suppose that F′ ⊂ F is a subfield, that
is, F′ is a field for the operations of F. Show that F and F′ have the same
characteristic.

Exercise 4.9. Show that the characteristic of Fp is p.

Exercise 4.10. Strengthen Proposition 4.11 by showing that if F is a field
of characteristic p > 0, and m1 = for some integer m, then m is a multiple
of p.

Exercise 4.11. Suppose the field F contains Fp as a subfield. Show that
the characteristic of F is p.

Exercise 4.12. Suppose that F has characteristic p > 0. Show that the
multiples of 1 (including 0) form a subfield of F with p elements.

Exercise 4.13. Show that if F is a finite field of characteristic p, then for
any a, b ∈ F, we have (a+ b)p = ap + bp.

Exercise 4.14. Prove Proposition 4.13. That is, show that if F is a finite
field of characteristic p, then for any a1, . . . , an ∈ F,

(a1 + · · ·+ an)p = ap1 + · · ·+ apn.

Hint: Use induction with the aid of the result of Exercise 4.13 and the
binomial theorem.

Exercise 4.15. Use Proposition 4.13 to show that ap = a for all a ∈ Fp.
Use this to deduce Proposition 4.14.
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Exercise 4.16. In the definition of the field F4, could we have altered the
definition of multiplication by requiring α2 = β2 = 1, but leaving all the
other rules as is, and still get a field?

Exercise 4.17. Suppose F is a field of characteristic p. Show that if a, b ∈ F
and ap = bp, then a = b.

Exercise 4.18. Show that F is a finite field of characteristic p, then F is
perfect. That is, every element in Fp is a pth power. (Hint: use the Pigeon
Hole Principle.)

Exercise 4.19. Use Fermat’s Theorem to find 9−1 in F13. Use this to solve
the equation 9x ≡ 15 mod 13.

Exercise 4.20. Find at least one primitive element β for F13? (Calculators
should be used here.) Also, express 9−1 using this primitive element instead
of Fermat’s Theorem.

Exercise 4.21. Write out the addition and multiplication tables for F6. Is
F6 is a field? If not, why not?
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4.3 The Field of Complex Numbers

We will now introduce the field C of complex numbers. The complex num-
bers are astonishingly rich, and an incredible amount of mathematics de-
pends on them. From our standpoint, the most notable fact about the
complex numbers is that they form an algebraically closed field in the sense
that every polynomial function

f(x) = xn + a1x
n−1 + · · ·+ an−1x+ an

with complex coefficients has a root in C. (See Example 4.12 for a complete
definition of the notion of a polynomial.) That is, there exists an α ∈ C
such that f(α) = 0. This statement, which is due to C. F. Gauss, is called
the Fundamental Theorem of Algebra.

4.3.1 The Construction

The complex numbers arise from the problem that if a is a positive real
number, then x2 + a = 0 apparently doesn’t have any roots. In order to
give it roots, we have to make sense of an expression such as

√
−a. The

solution turns turns out to be extremely natural. The real xy-plane R2

with its usual component-wise addition also has a multiplication such that
certain points (namely points on the y-axis), when squared, give points on
the negative x-axis. If we interpret the points on the x-axis as real numbers,
this solves our problem. It also turns out that under this multiplication on
R2, every nonzero pair (a, b)T has a multiplicative inverse. The upshot is
that we obtain the field C of complex numbers. The marvelous and deep
consequence of this definition is that C contains not only numbers such as√
−a, it contains the roots of all polynomial equations with real coefficients.

Let us now give the details. The definition of multiplication on R2 is
easy to state and has a natural geometric meaning discussed below. First
of all, we will call the x-axis the real axis, and identify a point of the form
(a, 0)T with the real number a. That is, (a, 0)T = a. Hence multiplication
on R can be reformulated as ab = (a, 0)T · (b, 0)T = (ab, 0)T . We extend this
multiplication to all of R2 by putting

(a, b)T · (c, d)T = (ac− bd, ad+ bc)T . (4.7)

(Note: do not confuse this with the inner product on R2.)
We now make the following definition.

Definition 4.9. Define C to be R2 with the usual component-wise addition
(vector addition) and with the multiplication defined by (4.7).
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Addition and multiplication are clearly binary operations. Notice that
(0, a)T · (0, a)T = (−a2, 0)T , so that (0, a)T is a square root of −a2. It is
customary to denote (0, 1)T by i so

i =
√
−1.

Since any point of R2 can be uniquely represented

(a, b)T = a(1, 0)T + b(0, 1)T , (4.8)

we can therefore write
(a, b)T = a+ ib.

In other words, by identifying the real number a with the vector a(1, 0)T on
the real axis, we can express any element of C as a sum of a real number, its
real part, and a multiple of i, its imaginary part. Thus multiplication takes
the form

(a+ ib)(c+ id) = (ac− bd) + i(ad+ bc).

The Fundamental Theorem of Algebra is stated as follows:
Theorem 4.18. A polynomial equation

f(z) = zn + an−1z
n−1 + · · ·+ a1z + a0 = 0

with complex (but possibly real) coefficients has n complex roots.

There are many proofs of this theorem, but none of them are elementary
enough to repeat here. Every known proof draws on some deep result from
another field, such as complex analysis or topology.

An easy but important consequence is that given any polynomial p(z)
with complex coefficients, there exist r1, . . . , rn ∈ C which are not necessarily
all distinct such that

p(z) = (z − r1)(z − r2) . . . (z − rn).

We now prove
Theorem 4.19. C is a field containing R as a subfield.

Proof. The verification of this theorem is simply a computation. The real
number 1 is the identity for multiplication in C, and 0 = (0, 0)T is the
identity for addition. If a+ ib 6= 0, then a+ ib has a multiplicative inverse,
namely

(a+ ib)−1 =
a− ib

a2 + b2
. (4.9)

The other properties of a field follow easily from the fact that R is a field.
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4.3.2 The Geometry of C

We now make some more definitions which lead to some beautiful geometric
properties of C. First of all, the conjugate z of z = a + ib is defined by
z = a− ib. It is easy to check the following identities:

w + z = w + z and (4.10)
wz = w z. (4.11)

The real numbers are obviously the numbers which are equal to their con-
jugates. Complex conjugation is the transformation from R2 to itself which
sends a point to its reflection through the real axis.

Formula (4.9) for (a + ib)−1 above can now be expressed in a new way.
Let z = a+ ib 6= 0. Since zz = a2 + b2, we get

z−1 =
z

a2 + b2
.

Notice that the denominator of the above formula is the square of the length
of z. The length of a complex number z = a + ib is called its modulus and
is denoted by |z|. Thus

|z| = (zz)1/2 = (a2 + b2)1/2,

and
z−1 =

z

|z|2
.

Since wz = w z, the modulus of a product is the product of the moduli:

|wz| = |w||z|. (4.12)

In particular, the product of two unit length complex numbers also has
length one. Now the complex numbers of unit length are just those on the
unit circle C={x2 + y2 = 1}. Every point of C can be represented in the
form (cos θ, sin θ) for a unique angle θ such that 0 ≤ θ < 2π. It is convenient
to use a complex valued function of θ ∈ R to express this. We define the
complex exponential to be the function

eiθ := cos θ + i sin θ. (4.13)

The following proposition is geometrically clear.
Proposition 4.20. Any z ∈ C can be represented as z = |z|eiθ for some
θ ∈ R. θ is unique up to a multiple of 2π.
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The value of θ in [0, 2π) such that z = |z|eiθ is called the argument of z.
The key property of the complex exponential is the identity

ei(θ+µ) = eiθeiµ, (4.14)

which follows from the standard trigonometric formulas for the sine and
cosine of the sum of two angles. (We will give a simple geometric proof of this
when we study rotations in the plane.) This gives complex multiplication a
geometric interpretation. Writing w = |w|eiµ, we see that

wz = (|w|eiµ)(|z|eiθ) = (|w||z|)ei(µ+θ).

In other words, the product wz is obtained by multiplying the lengths of
w and z and adding their arguments. (This gives another verification that
|wz| = |w||z|.)
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Exercises

Exercise 4.22. Express all solutions of the equation z3 +1 = 0 in the form
eiθ and interpret them as complex numbers.

Exercise 4.23. Factor z4−1 into the form (z−α1)(z−α2)(z−α3)(z−α4).

Exercise 4.24. Find all solutions of the linear system

ix1 + 2x2 + (1− i)x3 = 0
−x1 + ix2 − (2 + i)x3 = 0

Exercise 4.25. Suppose p(x) ∈ R[x]. Show that the roots of p(x) = 0 occur
in conjugate pairs, that is λ, µ ∈ C where λ = µ.

Exercise 4.26. Let a, b, c, d be arbitrary integers. Show that there exist
integers m and n such that (a2 + b2)(c2 + d2) = m2 + n2.
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4.4 Vector Spaces

Whenever term ”space“ is used in a mathematical context, it refers to a
vector space, viz. real or complex n-space, the space of continuous functions
on the line, the space of self adjoiont linear operators and so on. The
purpose of this section is to define the notion of a vector space and to give
some examples.

4.4.1 The Notion of a Vector Space

There many situations in which one deals with sets whose elements can be
added and multiplied by scalars, in a way that is analogous with vector
addition and scalar multiplication in Rn. For example, consider the set of
all real valued functions whose domain is a closed interval [a, b] in R, which
we will denote by R[a,b]. Addition and scalar multiplication of functions is
usually defined pointwise. That is, if f and g are elements of R[a,b], then
f + g is defined at x ∈ [a, b] by putting

(f + g)(x) = f(x) + g(x).

Likewise, if r is any real number, then rf ∈ R[a,b] takes the value

(rf)(x) = rf(x)

at x ∈ [a, b]. The key point is that we have defined sums and scalar multiples
such that R[a,b] is closed under these two operations in the sense introduced
in Section 4.1. and all scalar multiples of a single f ∈ R[a,b] are also elements
of R[a,b]. When a set S admits an addition (resp. scalar multiplication) with
this property, we will say that S is closed under addition (resp. scalar
multiplication).

A more refined example is the set C[a, b] of all continuous real valued
functions on [a, b]. Since C[a, b] ⊂ R[a,b], and the definitions of addition
and scalar multiplication already been given for R[a,b], we can just adopt
the addition and scalar multiplication we already have in R[a,b]. There is
something to worry about, however. We need to chack that C[a, b] is closed
under the addition and scalar multiplication from R[a,b]. But this is guaran-
teed by a basic theorem from calculus: the pointwise sum of two continuous
functions is continuous and any scalar multiple of a continuous function is
continuous. Hence f + g and rf belong to C[a, b] for all f and g in C[a, b]
and any real scalar r.

We now give the definition of a vector space over a field F. It will be
clear that, under the definitions of addition and scalar multiplication given
above, R[a,b] is a vector space over R.
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Definition 4.10. Let F be a field and V a set. Assume that there is a
binary operation on V called addition which assigns to each pair of elements
a and b of V a unique sum a + b ∈ V . Assume also that there is a second
operation, called scalar multiplication, which assigns to any r ∈ F and any
a ∈ V a unique scalar multiple ra ∈ V . Suppose that addition and scalar
multiplication together satisfy the following axioms.

(1) Vector addition is commutative. That is, a+b = b+a for all a,b ∈ V .

(2) Vector addition is also associative. That is, (a + b) + c = a + (b + c)
for all a,b, c ∈ V .

(3) There is an additive identity 0 ∈ V so that 0 + a = a for all a ∈ V .

(4) For all a ∈ V , 1a = a, where 1 is the multiplicative identity of F.

(5) For every element v of V , there is an element −v such that

v + (−v) = 0.

Thus −v is an additive inverse of v.

(6) Scalar multiplication is associative. If r, s ∈ F and a ∈ V , then

(rs)a = r(sa).

(7) Scalar multiplication is distributive. If r, s ∈ F and a,b ∈ V , then
r(a + b) = ra + rb, and (r + s)a = ra + sa.

Then V is called a vector space over F.

You will eventually come to realize that all of the above conditions are
needed. Just as for fields, the additive identity 0 is unique, and additive
inverses are unique: each vector has exactly one negative. We will call 0 the
zero vector.

Proposition 4.21. In a vector space, there can only be one zero vector.
Furthermore,the additive inverse of a vector is always unique.

Proof. Let 0 and 0′ both be additive identities. Then

0 = 0 + 0′ = 0′,
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by the definition of additive an identity. Hence the zero vector is unique.
Now suppose −v and −v′ are both additive inverses of v ∈ V . Then

−v = −v + 0 = −v + (v − v′) = (−v + v) + (−v′) = 0 + (−v′) = −v′.

Hence, additive inverses are also unique.

The astute reader will have noticed that this proof is a carbon copy of
the proof of Proposition 4.2.
Proposition 4.22. In a vector space V , 0v = 0 for all v ∈ V , and r0 = 0
for every scalar r. Moreover, −v = (−1)v.

Proof. Let v be arbitrary. Now, by properties (4) and (7) of the definition,

v = 1v = (1 + 0)v = 1v + 0v = v + 0v.

Adding −v to both sides and using associativity gives 0v = 0. For the
second assertion, note that

0 = 0v = (1 + (−1))v = 1v + (−1)v = v + (−1)v.

Hence, (−1)v is an additive inverse of v. Hence, by the uniqueness of the
additive inverse (see Proposition 4.21), (−1)v = −v for all v ∈ V .

If v1, . . . ,vk ∈ V , then we can define the sum

v1 + · · ·+ vk =
k∑
i=1

vi

inductively as (v1+· · ·+vk−1)+vk. Just as we verified for sums in a field, the
terms in this sum can be associated in any convenient way, since addition
is associative. Similarly, the terms vi can be taken in any order without
changing the sum, since addition is commutative. An expression

∑k
i=1 rivi,

where r1, . . . , rk ∈ F, is called a linear combination of v1, . . . ,vk ∈ V .

4.4.2 Examples

Example 4.7. The basic example of a vector space is Rn, the set of all
(ordered) n-tuples of real numbers. By an n-tuple, we mean a sequence
consisting of n real numbers. Our n-tuples, will usually be denoted by bold
faced lower case letters and written as columns such as

r =


r1
r2
...
rn

 .
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The entries r1, . . . , rn of an n-tuple r are called its components, ri being the
ith component. It’s important to recall that the order of the components
matters: e.g. 1

2
3

 6=

2
3
1

 .

Addition and scalar multiplication are carried out component-wise:

a + b =


a1

a2
...
an

+


b1
b2
...
bn

 =


a1 + b1
a2 + b2

...
an + bn

 .

and

ra = r


a1

a2
...
an

 =


ra1

ra2
...
ran

 .

Example 4.8. Recall that to save space, we will frequently use the transpose
operator to express a column vector in row vector form. We can imitate the
construction of Rn for any field F and n ≥ 1. Let Fn denote the set of
all n-tuples (a1, a2, . . . , an)T of elements of F. Defining addition and scalar
multiplication component-wise, we have

r(a1, a2, . . . , an)T = (ra1, ra2, . . . , ran)T

for all r ∈ F, and

a+b = (a1, a2, . . . , an)T +(b1, b2, . . . , bn)T = (a1 + b1, a2 + b2, . . . , an+ bn)T ,

for all a,b ∈ Fn. Then Fn is a vector space over F.

Example 4.9. Let Fm×n denote the m×n matrices over F. Then Fm×n is a
vector space over F with component-wise addition and scalar multiplication.
Note that we can easily identify Fm×n vector space with Fmn.

Example 4.10. (See Example 2.2.) If F = F2, the the elements of Fn are
called n-bit strings and written as binary words. For example, if n = 4,
we have 4-bit strings such as 0000, 1000, 0100, 1100 and so forth. Since
there are 4 places to put either a 0 or a 1, there are exactly 24 = 16 4-bit
strings. Binary strings have an interesting property: each string is its own
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additive inverse. Also, the string 1111 consisting of 1’s changes the parity
of each component. For example, 0101 + 1111 = 1010. n-bit strings are the
fundamental objects of coding theory.

Example 4.11. This example generalizes R[a,b]. Let S be any set and define
RS to be the set of all real valued functions whose domain is S. We define
addition and scalar multiplication pointwise, exactly as for R[a,b]. Then
RS is a vector space over R. Notice that Rn is nothing but RS , where
S = {1, 2, . . . , n}. Indeed, specifying the n-tuple a = (a1, a2, . . . an)T ∈ Rn

is the same as defining the function fa : S → R where fa(i) = ai.

Example 4.12 (Polynomials over a field). Let F be a field and suppose x
denotes a variable. We will assume it makes sense to talk about the powers
xi, where i is any positive integer, and that if i 6= j, then xi 6= xj . Note that
x1 = x, and x0 = 1. Define a polynomial over F to be an expression

p(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0,

where n is an arbitrary non-negative integer, and the coeffficents ai ∈ F.
Let F[x] to be the set of all polynomials over F. If an 6= 0, we say that f has
degree n. Here we impose that 1xi = xi for every i ≥ 0 and a(bxi) = (ab)xi

for al a, b ∈ F. We also agree that two polynomials p(x) = anx
n+an−1x

n−1+
· · ·+ a1x+ a0 and q(x) = bkx

k + bk−1x
k−1 + · · ·+ b1x+ b0 are equal if and

only if ai = bi for each index i.
The addition of polynomials is defined by adding the coefficients of the

corresponding xi. In particular, axi + bxi = (a+ b)xi for all a, b ∈ F. Scalar
multiplication is defined from the rule a(bxi) = (ab)xi. Then, with these
operations, F[x] is a vector space over F.

We may also multiply two polynomials in the natural way by putting
(axi)(bxj) = (ab)xi+j and assuming distributivity. Along with addition,
this makes F[x] into a ring.

Example 4.13. When the field F is Q, R or C, we can interpret polyno-
mials as functions. For example, the set P(R) of all real valued polynomial
functions with domain R consists of the functions

p(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0,

where a0, a1, . . . , an ∈ R and n ≥ 0. Here, x denotes the function on R
defined by x(t) = t for all t ∈ R. P(R) is a real vector space under pointwise
addition and scalar multiplication. Pointwise addition of two polynomials
p(x) and q(x) amounts to adding the coefficients of xi in each polynomial
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for every i. Notice that the space Pn(R) consisting of all polynomials of
degree at most n is indistinguishable from Rn+1 as a vector space over R.

Example 4.14. Consider the differential equation

y′′ + ay′ + by = 0, (4.15)

where a and b are real constants. This is an example of a homogeneous
linear second order differential equation with constant coefficients. The set
of twice differentiable functions on R which satisfy (4.15) is a real vector
space.
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Exercises

Exercise 4.27. Suppose V is a vector space over the field F. Show that if
v is a nonzero element of V and a is a scalar such that av = 0, then a = 0.
Conclude that if av = bv, where a, b ∈ F, then a = b.

Exercise 4.28. Let S be a set, and define FS to be the set of all functions
f : S → F .

(i) Show how to make FS into a vector space over F.

(ii) Let n be a positive integer. If S = {1, 2, . . . , n}, show how to identify
FS and Fn.



105

4.5 Inner Product Spaces

The purpose of this section will be to introduce an fundamental class of real
and complex vector spaces known as inner product spaces . There will be
many applications of this concept in later chapters.

4.5.1 The Real Case

The notion of a real inner product space is modeled on Euclidean n-space
Rn (Example 4.15) with its usual dot product x · y = xTy.

Definition 4.11. A real vector space V is called an inner product space if
to every pair of elements a,b ∈ V , there is a scalar (a,b) ∈ R satisfying the
following properties for all a,b, c ∈ V and r ∈ R:

(1) (a,b) = (b,a),

(2) (a + b, c) = (a, c) + (b, c) for all c ∈ V ,

(3) (ra,b) = r(a,b) for all r ∈ R, and

(4) if a 6= 0, then (a,a) > 0.

The length |a| of a ∈ V is defined by

|a| =
√

(a,a), (4.16)

and the distance between a and b is defined by

d(a,b) = |a− b|. (4.17)

Property (4) says that an inner product is positive definite. Notice the
identity |ra| = |r||a|. This in fact tells us that the length of the zero vector
0 is 0: |0| = 0.

Example 4.15 (Euclidean n-space). By Euclidean n-space, we mean Rn

with the Euclidean inner product

a · b =
n∑
i=1

aibi. (4.18)
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Note that for a,b ∈ Rn, we will use the notation a ·b instead of (a,b). The
inner product a · b can also be written as the matrix product aTb since

aTb =
(
a1 a2 · · · an

)

b1
b2
...
bn

 =
n∑
i=1

aibi.

4.5.2 Orthogonality

One of the most important properties of an inner product space is that there
is a well defined notion of orthogonality.

Definition 4.12. Two vectors a and b in an inner product space V are said
to be orthogonal if (a,b) = 0.

Two orthogonal vectors are also said to be perpendicular. The zero vec-
tor is orthogonal to every vector and, by property (4) of the inner product,
0 is in fact the only vector orthogonal to itself. Since two vectors a,b ∈ R2

are orthogonal if and only if and only if a1b1 + a2b2 = 0, it follows that if
a1b2 6= 0, then a and b are orthogonal if and only if a2/a1 = −b1/b2. Thus,
the slopes of such orthogonal vectors in R2 are negative reciprocals.

Now let V be an inner product space with inner product ( , ).
Proposition 4.23 (Pythagoras’s Theorem). Two vectors a and b in an
inner product space V are orthogonal if and only if

|a + b|2 = |a− b|2 = |a|2 + |b|2.

Proof. Expanding |a + b|2 = (a + b,a + b), we get

|a + b|2 = (a,a) + 2(a,b) + (b,b) = |a|2 + 2(a,b) + |b|2.

Hence (a,b) = 0 if and only if |a+b|2 = |a|2 + |b|2. The equation for a−b
also follows immediately from this.

If a and b are elements of V and b 6= 0, then there exists a unique λ ∈ R
such that a = λb+c, and (b, c) = 0. This is checked directly by computing
(b, c), where c = a− λb. In fact, (b, c) = 0 if and only if λ = (a,b)/(b,b).
Applying Pythagoras, we see that

|a|2 = λ2|b|2 + |c|2.

What results from this is the famous
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Proposition 4.24 (Cauchy-Schwartz Inequality). For any a,b ∈ V ,

|(a,b)| ≤ |a||b| (4.19)

with equality if and only if a is a multiple of b.

Proof. The result is certainly true if b = 0. Hence we can assume b 6= 0.
Since |c| ≥ 0, |a|2 ≥ λ2|b|2. Using the definition of λ, we see that (a,b)2 ≤
|a|2|b|2, so taking square roots gives us the inequality. Equality holds if and
only if c = 0, which holds if and only if a and b are collinear.

The Cauchy-Schwartz Inequality for Rn says that

|
n∑
i=1

aibi| ≤
( n∑
i=1

a2
i

)1/2( n∑
i=1

b2i
)1/2

.

The second important conclusion from the above discussion and the proof
of the Cauchy-Schwartz Inequality is

Proposition 4.25. Let a and b be elements of an inner product space V ,
and suppose b 6= 0. Then we can uniquely decompose a as the sum of two
orthogonal vectors

a = λb + c, (4.20)

where (b, c) = 0. The unique scalar λ is (a,b)/(b,b).

The vector
(
(a,b)/(b,b)

)
b is called the projection of a on b. Finally,

we define the angle between nonzero vectors.

Definition 4.13. The angle between two nonzero vectors a and b in an
inner product space V is defined to be unique angle θ ∈ [0, π] such that

cos θ =
(a,b)
|a||b|

. (4.21)

Thus we obtain an expression for the inner product which is often taken
as a definition. Namely,

(a,b) = |a||b| cos θ.

We now consider a more esoteric example.

Example 4.16. The vector space C[a, b] of continuous real valued functions
on the interval [a, b] which was defined above also carries an inner product,
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which enables us (at least partially) to extend our intuition about Rn to
C[a, b]. The inner product (f, g) of f, g ∈ C[a, b] is defined by putting

(f, g) =
∫ b

a
f(t)g(t)dt.

The first three axioms for the Euclidean inner product on Rn are verified
by applying standard facts about integration proved (or at least stated) in
any calculus book. Recall that the last axiom requires that (f, f) ≥ 0 and
(f, f) = 0 only if f = 0. The verification of this requires recalling how the
Riemann integral is defined. We leave it as an exercise in elementary real
analysis. Thus the length ||f || of an f ∈ C[a, b] is defined to be

||f || := (f, f)1/2 =
( ∫ b

a
f(t)2dt

)1/2
,

and the distance between f, g ∈ C[a, b] is defined to be

d(f, g) = ||f − g|| =
( ∫ b

a
(f(t)− g(t))2dt

)1/2
.

The Cauchy-Schwartz Inequality for C[a, b] says that for any f, g ∈ C[a, b],
we have

|
∫ b

a
f(t)g(t)dt| ≤

(∫ b

a
f(t)2dt

)1/2(∫ b

a
g(t)2dt

)1/2
,

with equality if and only if one of the functions is a constant multiple of the
other.

Two functions f, g ∈ C[a, b] are orthogonal if and only if
∫ b
a f(t)g(t)dt =

0. For example, since
∫ 2π
0 cos t sin tdt = 0, cos t and sin t are orthogonal

on [0, 2π]. Although the notion of orthogonality for C[a, b] doesn’t have any
obvious geometric meaning, it nevertheless enables us to extend our intuitive
concept of orthogonality into a new situation. In fact, this extension turns
out to be extremely important since it leads to the idea of expanding a
function in terms of possibly infinitely many mutually orthogonal functions.
These infinite series expansions are called Fourier series.

Example 4.17. Suppose [a, b] = [−1, 1]. Then the functions 1 and x are
orthogonal. In fact, xk and xm are orthogonal if k is even and m is odd, or
vice versa. Indeed,

(xk, xm) =
∫ 1

−1
xk · xmdx =

∫ 1

−1
xk+mdx = 0,
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since k+m is odd. On the other hand, the projection of x2 on the constant
function 1 is r1, where r = 1

2

∫ 1
−1 1 · x2dx = 1

3 . Thus, x2 − 1/3 is orthogonal
to the constant function 1 on [−1, 1], and x2 = (x2 − 1/3) + 1/3 is the
orthogonal decomposition of x2 on [−1, 1].

4.5.3 Hermitian Inner Products

When V is a complex vector space, the notion of a inner product needs to
be changed somewhat. The main example is what is known as the standard
Hermitianinner product on Cn. After considering this case, we will give the
general definition.

Example 4.18 (Hermitian n-space). The Hermitian inner product of a pair
of vectors w, z ∈ Cn is defined to be the complex scalar

w • z = wTz =
(
w1 w2 · · · wn

)

z1
z2
...
zn

 =
n∑
i=1

wizi. (4.22)

The vector wT is the frequently called Hermitian transpose of w. We’ll
denote it by wH for short. Thus,

w • z = wHz.

Notice that w • z is not necessarily real, although w •w is in fact a nonneg-
ative real number. In fact, wHw > 0 provided w 6= 0. We define the length
|w| of w by

|w| = (w •w)1/2 = (wHw)1/2 =
( n∑
i=1

|wi|2
)1/2

.

We now make the general definition.

Definition 4.14. Let V be a complex vector space. A Hermitian inner
product on V is a rule assigning a scalar (w, z) ∈ C to to every pair of
vectors w, z ∈ V such that

(i) (w + w′, z) = (w, z) + (w′, z) and (w, z + z′) = (w, z) + (w, z′),

(ii) (z,w) = (w, z),

(iii) (αw, z) = α(w, z) and (w, βz) = β(w, z), and
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(v) if w 6= 0, (w,w) > 0.

A complex vector space endowed with a Hermitian inner product is called a
Hermitian inner product space.
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Exercises

Exercise 4.29. A nice application of Cauchy-Schwartz is that if a and b
are unit vectors in Rn such that a · b = 1, then a = b. Prove this.

Exercise 4.30. Prove the law of cosines: If a triangle has sides with lengths
a, b, c and θ is the angle between the sides of lengths a and b, then c2 =
a2 + b2 − 2ab cos θ. (Hint: Consider c = b− a.)

Exercise 4.31. Orthogonally decompose the vector (1, 2, 2)T in R3 as p+q
where p is a multiple of (3, 1, 2)T .

Exercise 4.32. Consider the real vector space V = C[0, 2π] with the inner
product defined in Section 4.5.

(i) Find the length of sin2 t in V .

(ii) Compute the inner product (cos t, sin2 t).

(iii) Find the projection of sin2 t on each of the functions 1, cos t, and sin t
in V .

(iv) Are 1, cos t and sin t mutually orthogonal as elements of V ?

(v) How would you define the orthogonal projection of sin2 t onto the sub-
space W of V spanned by 1, cos t, and sin t?

(vi) Describe the subspace W of part (v) as an Rn.

Exercise 4.33. Assume f ∈ C[a, b]. The average value of f over [a, b] is
defined to be

1
b− a

∫ b

a
f(t)dt.

Show that the average value of f over [a, b] is the projection of f on 1. Does
this suggest an interpretation of the average value?

Exercise 4.34. Let f, g ∈ C[a, b]. Give a formula for the scalar t which
minimizes

||f − tg||2 =
∫ b

a
(f(x)− tg(x))2dx.

Exercise 4.35. Show that the Hermitian inner product on Cn satisfies all
the conditions listed in Definition 4.14.
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4.6 Subspaces and Spanning Sets

The purpose of this section is to define and study the fundamental notions
of a subspaces and spanning sets.

4.6.1 The Definition of a Subspace

Definition 4.15. Let V be an arbitrary vector space over a field F. A non-
empty subset W of V is called a linear subspace of V , or simply a subspace,
provided the following two conditions hold:

(i) a + b ∈W whenever a,b ∈W , and

(ii) ra ∈W whenever r ∈ F.

Clearly, every subspace of a vector space contains the zero vector 0. In
fact, {0} is itself a subspace, which is called the trivial subspace. Consider,
for example, a linear equation ax+by+cz = d, where a, b, c, d ∈ F. If d 6= 0,
then its solution set can’t be a subspace of F3 since x = y = z = 0 will not be
a solution, and hence the solution set won’t contain 0 = (0, 0, 0)T . On the
other hand, as we note below, the solution set of an arbitrary homogeneous
system ax+ by + cz = 0 is a subspace of F3. (See Example 4.19 below.)

The following Proposition is an immediate consequence of the definition.

Proposition 4.26. A subspace W of V is a vector space over F in its own
right.

Proof. It appears we have to check all of the vector space axioms for W .
Fortunately this isn’t the case, however. We know by assumption that W
is a nonempty subset of V which is closed under addition and scalar multi-
plication. But then W contains 0, since 0w = 0 for any w ∈ W , and every
element w of W has its additive inverse −w in W , since −w = (−1)w. But
the rest of the vector space axioms hold in W since they already hold in V .
Therefore, all the vector space axioms hold for W .

Example 4.19. The solutions (x, y, z)T ∈ R3 of a homogeneous linear equa-
tion ax+by+cz = 0, with a, b, c ∈ R make up the subspace P of R3 consisting
of all vectors orthogonal to (a, b, c)T . The fact that P is a subspace follows
from the properties of the inner product: the sum of any two solutions is
also a solution, and any scalar multiple of a solution is a solution. More
generally, the solution set of any homogeneous linear equation in n variables
with coefficients in a field F is a subspace of Fn.
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The subspaces of R2 are easily described. They are {0}, any line through
0 and R2 itself. The subspaces of R3 are considered in an exercise.

A basic method for constructing subspaces of a given vector space V is
to take all linear combinations of a fixed collection of vectors in V .

Proposition 4.27. Let v1, . . . ,vk be vectors in V , and let W be the set of
all linear combinations of v1, . . . ,vk. Then W is a subspace of V .

Proof. This follows readily from Proposition 4.26. The sum of two linear
combinations of v1, . . . ,vk is also a linear combination of v1, . . . ,vk, and any
scalar multiple of a linear combination of v1, . . . ,vk is again such a linear
combination.

Definition 4.16. The subspace of V consisting of all linear combinations
of v1, . . . ,vk is called the span of v1, . . . ,vk. We denote this subspace by
span{v1, . . . ,vk}.

We will denote the subspace in V spanned a vector v 6= 0 by Fv. A
subspace spanned by two noncollinear vectors u and v is called a plane.

Suppose F is a prime field, say Fp. Then if v ∈ Fn, we can ask how
many elements does the line Fv have? If v = 0, the answer is certainly one.
Otherwise, recall from Exercise 4.27 that if a, b ∈ F and a 6= b, then av 6= bv.
Consequently, the multiples of v are all distinct. Therefore |Fv| = |F| = p.

Proposition 4.27 says that subspaces are closed under taking linear com-
binations. It also asserts the converse. The set of all linear combinations of
a collection of vectors in V is a subspace of V . We will denote the subspace
spanned by v1, . . . ,vk by span{v1, . . . ,vk}.

As previously noted, lines L and planes P in R3 containing 0 are sub-
spaces of R3. A line L is by definition span{a} for some (in fact, any)
nonzero a ∈ L. Is every plane P the span of a set of vectors? Clearly, yes,
since all we need to do to find two vectors that span P is to choose the two
fundamental solutions defined in Section 2.4.2.

On the other hand, suppose a and b are two non-collinear vectors in R3.
Their cross product is a vector n = a×b which is orthogonal to both a and
b. The cross product is defined as

a× b = (a2b3 − a3b2,−(a1b3 − a3b1), a1b2 − a2b1)T . (4.23)

The cross product a×b is orthogonal to any linear combination of a and b.
Thus we obtain a homogeneous equation satisfied by exactly those vectors
in P = span{a,b}. If n = (r, s, t)T , then an equation is rx+ sy + tz = 0.
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Example 4.20. Let P be the plane spanned by (1, 1, 2)T and (−1, 0, 1)T .
Then (1, 1, 2)T × (−1, 0, 1)T = (1,−3, 1)T is orthogonal to P , so an equation
for P is x− 3y + z = 0.

The cross product a × b is defined for any two vectors in F3 for any
field F, and, in fact, this gives a method for obtaining an equation for the
plane in F3 spanned by any two noncollinear vectors a and b for any field F.
In general, however, one cannot make any statements about orthogonality
since the notion of an inner product doesn’t exist for vector spaces over an
arbitrary field.



115

Exercises

In the following exercises, V (n, p) denotes (Fp)n.

Exercise 4.36. Which of the following subsets of R2 is not a subspace?

(a) The line x = y;

(b) The unit circle;

(c) The line 2x+ y = 1;

s(d) The first octant x, y ≥ 0.

Exercise 4.37. Prove that every line through the origin and plane through
the origin in R3 are subspaces. Use this to list all subspaces of R3.

Exercise 4.38. Describe all subspaces of R4.

Exercise 4.39. Show that a subset of V (n, p) which contains the zero vector
and is closed under addition is a subspace.

Exercise 4.40. Find all the subspaces of the vector space V (n, p) in the
following cases:

(i) n = p = 2;

(ii) n = 2, p = 3; and

(iii) n = 3, p = 2.

Exercise 4.41. Suppose A ∈ Fm×n. Show that the null space N (A) is a
subspace of Fn.

Exercise 4.42. How many points lie on a line in V (n, p)?

Exercise 4.43. How many points lie on a plane in V (3, 2)? Generalize this
to V (n, p)?

Exercise 4.44. Let F = F2. Find all solutions in F4 of the equation w+x+
y + z = 0. Compare the number of solutions with the number of elements
F4 itself has?

Exercise 4.45. Find a spanning set for the plane 3x− y + 2z = 0 in R3.

Exercise 4.46. Find a spanning set for the plane x+ y + z = 0 in (F2)3 =
V (3, 2).

Exercise 4.47. Find an equation for the plane in R3 through the origin
containing both (1, 2,−1)T and (3, 0, 1)T .
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Exercise 4.48. Find an equation for the plane in (F2)3 through the origin
containing both (1, 1, 1)T and (0, 1, 1)T .

Exercise 4.49. Let a,b ∈ R3. Show that the cross product a × b is or-
thogonal to any linear combination of a and b.

Exercise 4.50. Let L be the line obtained by intersecting the two planes
through the origin in R3. Express L as span{a} = Ra where a is a cross
product.

Exercise 4.51. Let F be any field, and suppose V and W are subspaces of
Fn.

(i) Show that V ∩W is a subspace of Fn.

(ii) Let V +W = {u ∈ Fn | u = v+w ∃v ∈ V,w ∈W}. Show that V +W
is a subspace of Fn.

Exercise 4.52. Find the total number of subspaces of (F2)2.

Exercise 4.53. Repeat Exercise 4.52 for (F2)3.
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4.7 Summary

The purpose of this chapter was to introduce two fundamental notions: fields
and vector spaces. Fields are the number systems where we can add, sub-
tract, multiply and divide in the usual sense. The basic examples were the
rationals Q, which form the smallest field containing the integers, the reals
(which are hard to define, so we didn’t), the prime fields Fp, which are based
on modular arithmetic, and the complex numbers C, which has the crucial
property that it is algebraically closed. The key property of a vector space
is that we can add elements (i.e. vectors) and operate on them by scalars.
General vector spaces do not have a multiplication, although some specific
examples do.

We also considered a special class of vector spaces over R, namely inner
product spaces, and pointed out that the analogue of an inner product for a
vector space over C is a Hermitian inner product space. The basic example
of an inner product space is Rn with its dot product. Inner product spaces
enable us to formulate the notion of orthogonality and use projections, which
will be studied in much more detail in a later chapter. An important example
of an inner product space is C[a, b], the space of continuous real valued
functions on [a, b], the inner product being given by integration over [a, b].
Many of the results about the most familiar inner product space, namely
Rn, extend easily to a general inner product space such as C[a, b]. This is
one of the most attractive features of the notion.

Finally, we considered the notion of a subspace of a vector space V and
introduced the idea of the subspace spanned by a finite subset of V . This is
the subspace consisting of all linear combinations of elements of the subset.
Another important example of a subspace of Fn is the set of all solutions of
a homogeneous linear system Ax = 0, where A is an m× n matrix over F.
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Chapter 5

Finite Dimensional Vector
Spaces

Vector spaces which are spanned by a finite number of vectors are said
to be finite dimensional. The purpose of this chapter is explain the basic
theory of finite dimensional vector spaces, including the notions of linear
independence, bases and dimension. Indeed, the development of a workable
definition for the notion of dimension is one of the most important contri-
butions of linear algebra. We will also describe some ways of constructing
vector spaces such as direct sums and quotients.

5.1 The Notion of Dimension

Roughly speaking, the dimension of a vector space should be the largest
number of degrees of freedom available in the space. The dimension should
also be the minimal number of parameters required to describe the space.
The meaning of this is clear for subsets of Rn if n = 1, 2 or 3. For example,
the path traced out by a point moving smoothly through R3 is intuitively
one dimensional because it depends on a single parameter. Similarly, a
smooth surface is two dimensional. (On the other hand, a definition of the
dimension of a non-smooth path or surface can be very tricky to formulate.)
In particular, a plane through the origin in R2 can be described as the set of
all linear combinations xv + yw, where v and w are any two non-collinear
vectors on the plane and x, y vary over R. The objects we will be treating
here are all linear, and, as we will see, their dimensions are defined in a
natural and computable way.

If F is an arbitrary field, say Fp, one doesn’t have any physical intuition
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to fall back on. Thus, a definition of the dimension of a vector space over
F, such as Fn has to be made in a less intuitive fashion, in such a way that
the answer for Fn should still be n. This is where the efficacy of abstract
algebra becomes apparent.

5.1.1 Linear Independence

Let V denote a not necessarily finite dimensional vector space over an
arbitrary field F. Before defining the notion of the dimension of V , we must
first introduce some preliminary notions, starting with linear independence.
Put informally, a set of vectors is linearly independent if no one of them
can be expressed as a linear combination of the others. In other words.
two vectors are linearly independent when they don’t lie on the same line
through the origin, and three vectors are independent when they don’t lie
on the same plane through the origin. The formal definition, which we now
give, is stated in a slightly different way.

Definition 5.1. Let w1, . . . ,wk be in V . We say that w1, . . . ,wk are lin-
early independent (or, simply, independent) if and only if the only linear
combination

a1w1 + a2w2 + · · ·+ akwk = 0, (5.1)

with a1, a2, . . . , ak ∈ F is the trivial combination a1 = a2 = · · · = ak = 0. If
(5.1) has a solution where some ai 6= 0, we say that w1, . . . ,wk are linearly
dependent (or, simply, dependent). We will also say that a finite subset S of
V is independent if the vectors contained in S are independent.

Notice that we’re only defining linear indepence for a finite number of
vectors. The reader might want to contemplate how to do this for infinite
sets. Notice that any finite set of vectors in V containing 0 is dependent
(why?).

Let us begin by relating the formal definition to the above discussion.
Proposition 5.1. A finite set of vectors is linearly dependent if and only
if one of them can be expressed as a linear combination of the others.

Proof. Let w1, . . . ,wk be the vectors, and suppose one of the vectors, say
w1, is a linear combination of the others. Then

w1 = a2w2 + · · ·+ akwk.

Thus
w1 − a2w2 − · · · − akwk = 0,
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so (5.1) has a solution with a1 = 1. Therefore w1, . . . ,wk are dependent.
Conversely, suppose w1, . . . ,wk are dependent. This means that there is
a solution a1, a2, . . . , ak of (5.1), where some ai 6= 0. We can assume (by
reordering the vectors) that the nonzero coefficient is a1. We can thus write

w1 = b2w2 + · · ·+ bkwk,

where bi = −ai/a1, so the proof is done.

The following Proposition gives one of the most important properties of
linearly independent sets.
Proposition 5.2. Assume that w1, . . . ,wk are linearly independent vectors
in V and suppose v is in their span. Then v =

∑k
i=1 riwi for exactly one

linear combination of w1, . . . ,wk.

Proof. By assumption, there exists an expression

v = r1w1 + r2w2 + · · ·+ rkwk,

where r1, . . . , rk ∈ F. Suppose there is another expression, say

v = s1w1 + s2w2 + · · ·+ skwk

where the si are also elements of F. By subtracting and doing a bit of
algebraic manipulation, we get that

0 = v − v = (r1 − s1)w1 + (r2 − s2)w2 + · · ·+ (rk − sk)wk.

Since the wi are independent, every coefficient ri − si = 0, and this proves
the Proposition.

When V = Fn, the definition of linear independence involves a linear
system. Recalling that vectors in Fn are viewed as column vectors, consider
the n×m matrix

A = (w1 · · · wm).

By the theory of linear systems, we have
Proposition 5.3. The vectors w1, . . . ,wm in Fn are linearly independent
exactly when the system Ax = 0 has no nontrivial solution. This is the case
exactly when the rank of A is m. In particular, more than n vectors in Fn
are linearly dependent.

Proof. The first statement follows from the definition of Ax, and the second
and third follow from Proposition 2.6.
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5.1.2 The Definition of a Basis

As above, let V be a vector space over a field F.

Definition 5.2. A collection of vectors in V which is linearly independent
and spans V is called a basis of V .

Notice that by our convention, a basis of V is necessarily finite. The
definition of linear independence can easily be reformulated so that the no-
tion of an infinite basis makes sense. Our main concern, however, is the case
where V is finite dimensional; that is, V is spanned by finitely many vectors.

Let us now consider some examples.

Example 5.1 (The standard basis of Fn). The standard basis of Fn is the set
of the columns of the identity matrix In. The i-th column of In will always
be denoted by ei. There is a slight ambiguity in this notation, because the
definition of standard basis depends on n, so it would be better to denote the
standard basis vectors in Fn by ei(n) instead of ei . We’ll ignore this point
because the context will usually make it clear which Fn we are considering.
Since a1

...
an

 = a1e1 + · · ·+ anen

and In has rank n, it is clear that e1, . . . , en do indeed give a basis of Fn.

Example 5.2 (Lines and planes). A nonzero vector in Rn spans a line, and
clearly a nonzero vector is linearly independent. Hence a line through 0
has a basis consisting of any nonzero vector on the line. (Thus there isn’t
a unique basis.) A plane P containing the origin is spanned by any pair
of non collinear vectors on P , and any two non collinear vectors on P are
linearly independent. In fact, every basis of P consists of two independent
vectors on P .

It should noted that the trivial vector space {0} does not have a basis.
Indeed, in order to have a basis, {0} has to be independent, which it isn’t.

Proposition 5.2 allows us to deduce an elementary but important char-
acterization of a basis.
Proposition 5.4. The vectors v1, . . . ,vr in V form a basis of V if and only
if every vector v in V admits a unique expression

v = a1v1 + a2v2 + · · ·+ arvr,

where a1, a2, . . . ar are elements of F.
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Proof. We leave this as an exercise.

Here is another characterization of a basis.
Proposition 5.5. A subset of V which is a maximal linearly independent
set is a basis.

Proof. By a maximal linearly independent set, we mean an independent sub-
set {v1, . . . ,vr} of V such that if w is any element of V , then {v1, . . . ,vr,w}
is dependent. The point is that a maximal linearly independent subset spans
V . For if w ∈ V , then from the fact that v1, . . . ,vr,w are dependent, there
are scalars a1, . . . , ar, and b not all zero such that

a1v1 + · · ·+ arvr + bw = 0.

But if b = 0, then all the ai = 0 as well (why?), so b 6= 0. Hence w is a
linear combination of v1, . . . ,vr, so the proof is done.

Example 5.3 (Column spaces). Suppose A is an m×n matrix over F. The
column space col(A) of A is the subspace of Fm spanned by the columns
of A. The column space has an important interpretation in terms of linear
systems. Let a1, . . . ,an be the columns of A. By definition, b ∈ col(A) if
and only if there are scalars r1, . . . , rn such that b = r1a1 + · · · + rnan. In
matrix terms, this means Ar = b. Thus,

Proposition 5.6. The column space of the m× n matrix A consists of all
b ∈ Fn such that the linear system Ax = b is consistent. If A has rank n,
then its columns are independent and hence, by definition, form a basis of
col(A).

Proof. The first statement is obvious from the above remarks. If A has
rank n, then Proposition 2.6 tells us that the system Ax = 0 has a unique
solution, which is equivalent to its columns being independent. Hence, by
definition form a basis.

If the rank of A is less than n, the columns are dependent, so we don’t
have a basis. The natural way to proceed is to try to find a set of columns
which are independent and still span col(A). This is the general problem of
extracting a basis from a spanning set, which we will treat below.

Example 5.4 (Basis of the null space). Let A be an m × n matrix over
F. As pointed out in Chapter 2 (for R, but equally valid for any F), the
fundamental solutions of Ax = 0 span the null space N (A), which is a
subspace of Fn. In fact, they are also independent, so the fundamental
solutions comprise a basis of N (A).
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Exercises

Exercise 5.1. Are the vectors (0, 2, 1, 0)T , (1, 0, 0, 1)T and (1, 0, 1, 1)T in
R4 are independent? Can they form a basis of R4?

Exercise 5.2. Are (0, 0, 1, 0)T , (1, 0, 0, 1)T and (1, 0, 1, 1)T independent in
V (4, 2) = (F2)4?

Exercise 5.3. Find the fundamental solutions of the system

0x1 + x2 + 2x3 + 0x4 + 3x+ 5− x6 = 0
0x1 + 0x2 + 0x3 + x4 + 2x5 + 0x6 = 0.

and show they are linearly independent.

Exercise 5.4. Consider the matrix A =

1 2 0 1 2
2 0 1 −1 2
1 1 −1 1 0

 as an ele-

ment of R3×5.

(i) Show that the fundamental solutions of Ax = 0 are a basis of N (A).

(ii) Repeat (i) when A is considered to be a matrix over F3.

Exercise 5.5. Prove the assertion made in Example 5.4 that the funda-
mental solutions are a basis of N (A).

Exercise 5.6. Show that any subset of a linearly independent set is linearly
independent.

Exercise 5.7. Suppose u1,u2, . . . ,uk are mutually orthogonal unit vectors
in Rm. Show u1,u2, . . . ,uk are independent.

Exercise 5.8. Show that m independent vectors in Fm are a basis.

Exercise 5.9. Find a basis for the space R[x]n of all polynomials with real
coefficients having degree at most n.

Exercise 5.10. True or False: Any four vectors in R3 are dependent. (Sup-
ply reasoning.)

Exercise 5.11. Use the theory of linear systems to show the following:

(i) More than m vectors in Fm are dependent.

(ii) Fewer than m vectors in Fm cannot span Fm.
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Exercise 5.12. Let u, v and w be a basis of R3.

(a) Determine whether or not 3u + 2v + w, u + v + 0w, and −u + 2v− 3w
are independent.

(b) Do the vectors in part (a) span R3? Supply reasoning.

(c) Find a general necessary and sufficient condition for the vectors a1u +
a2v + a3w, b1u + b2v + b3w and c1u + c2v + c3w to be independent, where
a1, a2, . . . , c3 are arbitrary scalars.

Exercise 5.13. Find a basis for the set of invertible 3× 3 matrices over an
arbitrary field F. (Hint: thimk.)
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5.2 Bases and Dimension

We now at last get down to defining the notion of dimension. Lines and
planes have dimension one and two respectively. But we’ve already noticed
that they also have bases with one and two elements respectively. We’ve also
remarked that the dimension of a vector spaceshould be the maximal number
of degrees of freedom, which is cleary the maximal number of independent
vectors. Thus if the number of vectors in a basis is the maximal number of
independent vectors, then the definition of dimension should be the number
of vectors in a basis. We will now see that this is the case.

5.2.1 The Definition of Dimension

Let V denote a finite dimensional vector space over a field F. We now state
one of the definition of dimension, one of the most fundamental notions in
linear algebra.

Definition 5.3. The dimension of the finite dimensional vector space V is
defined to be the number of elements in a basis of V . For convenience, we
will define the dimension of the trivial vector space {0} to be 0, even though
{0} doesn’t have a basis. The dimension of V will be denoted by dimV or
by dimF V in case there is a chance of confusion about which field is being
considered.

Of course, by Proposition 5.5, the definition amounts to saying that the
dimension of V is the maximal number of independent vectors in V . But it
actually says more. The definition first asserts that every nontrivial finite
dimensional vector space V has a basis. It also asserts that any two bases
of V have the same number of elements. These assertions aren’t obvious, so
we have to prove them before we can use the definition. This will be done
in the Dimension Theorem, which is stated and proved below.

Let us point out a subtlety in the definition when F = C and V = Cn.
Since C = R2, Cn is the same as R2n. Thus, if we ask for the dimension of
Cn, the answer could be either n or 2n and still be consistent with having
the dimension of Fn be n. What we need to clarify is that Cn is both a
vector space over C and a vector space over R, and dimC Cn = n, while
dimR Cn = dimR R2n = 2n. Hence when we speak of the dimension of Cn,
we need to differentiate between whether we are speaking of the complex
dimension (which is n) or the real dimension (which is 2n).
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5.2.2 Examples

Let us consider some examples.

Example 5.5. The dimension of a line is 1 and that of a plane is 2. The
dimension of the hyperplane a1x1 + · · ·+ anxn = 0 in Rn is n− 1, provided
some ai 6= 0, since the n − 1 fundamental solutions form a basis of the
hyperplane. These remarks are also true in Fn for any F.

Example 5.6. Let A = (w1 w2 . . . wn) ∈ Fn×n have rank n. Then, by
Proposition 2.6, the columns of A are a basis of Fn.

Example 5.7. Recall from Example 4.13 that if n is a positive integer, then
Pn(R) denotes the space of polynomials

f(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0

on R of degree at most n. Let us show, for example, that 1, x, x2, x3 form a
basis of P3(R). To see independence, we have to show that if

f(x) =
3∑
i=0

aix
i = 0,

then each ai = 0. That is, we have to show that if f(r) = 0 for all r ∈ R,
then each ai = 0. Now if f(r) = 0 for all r ∈ R, then

f(0) = a0 = 0, f ′(0) = a1 = 0, f ′′(0) = 2a2 = 0, f ′′′(0) = 3a3 = 0.

Hence we have the asserted linear independence. It is obvious that 1, x, x2, x3

span P3(R), so the claim is established.

One can use the same argument to show that 1, x, x2, . . . , xn are a basis
of Pn(R) for all n ≥ 0.

Example 5.8. Let a1, . . . , am be real constants. Then the solution space of
the homogeneous linear differential equation

y(m) + a1y
(m−1) + · · ·+ am−1y

′ + amy = 0

is a vector space over R. It turns out, by a theorem on differential equations,
that the dimension of this space is m. For example, when m = 4 and ai = 0
for 1 ≤ i ≤ 4, then we are dealing with the vector space P3 of the last
example. The solution space of the equation y′′+ y = 0 consists of all linear
combinations of the functions sinx and cosx.
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5.2.3 The Dimension Theorem

We will now prove a theorem that shows that the definition of dimension
makes sense and more. This is one of the main results in linear algebra.

Theorem 5.7 (The Dimension Theorem). Assume V is a non-trivial finite
dimensional vector space over a field F. Then V has a basis. In fact, any
spanning set for V contains a basis. Furthermore, any linearly independent
subset of V is contained in a basis. Finally, any two bases of V have the
same number of elements.

Proof. We first show every spanning set contains a basis. Let w1, . . . ,wk

span V . Consider the set of all subsets of {w1, . . . ,wk} which also span
V , and let {v1, . . . ,vr} be any such subset where r is minimal. There is
no problem showing such a subset exists, since {w1, . . . ,wk} has only 2k

subsets. It suffices to show v1, . . . ,vr are independent, so suppose

a1v1 + · · ·+ arvr = 0.

If ai 6= 0, then

vi =
−1
ai

∑
j 6=i

ajvj ,

so if vi is deleted from {v1, . . . ,vr}, we still have a spanning set. This
contradicts the minimality of r, and hence v1, . . . ,vr are independent. Thus,
v1, . . . ,vr form a basis, so every spanning set contains a basis. Since, by
assumption, V has a finite spanning set, it has a basis.

We next show that any linearly independent set in V can be extended to
a basis. Let w1, . . . ,wm be independent, and put W = span{w1, . . . ,wm}.
I claim that if v /∈ W , then w1, . . . ,wm,v are independent. To see this,
suppose

a1w1 + · · ·+ amwm + bv = 0.

If b 6= 0, it follows (as in the last argument) that v ∈ W , contrary to the
choice of v. Thus b = 0. But then each ak = 0 also since the wk are
independent. This proves the claim.

Now suppose W 6= V . We will use the basis v1, . . . ,vr obtained above.
If each vi ∈ W , then W = V and we are done. Otherwise, let i be the
first index such that vi 6∈ W. By the previous paragraph, w1, . . . ,wm,vi
are independent. Hence they form a basis for W1 = span{w1, . . . ,wm,vi}.
Clearly we may continue, at each step adding one of the vj , if necessary,
always maintaining an independent subset of V . Eventually we have to
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obtain a subspace V ′ of V containing v1, . . . ,vr. But v1, . . . ,vr span V , so
V ′ = V . Thus w1, . . . ,wm are contained in a basis of V .

It remains to show that any two bases of V have the same number of
elements. This is proved by the following replacement technique. Suppose
u1, . . . ,um and v1, . . . ,vn are two bases of V . Without any loss of generality,
suppose m ≤ n. We can certainly write

v1 = r1u1 + r2u2 · · ·+ rmum.

Since v1 6= 0, some ri 6= 0, so we may suppose, if necessary by renumbering
indices, that r1 6= 0. I claim that v1,u2, . . . ,um is also a basis of V . To see
this, we must show v1,u2, . . . ,um are independent and span. Suppose that

x1v1 + x2u2 · · ·+ xmum = 0.

If x1 6= 0, then
v1 = y2u2 + · · ·+ yjum,

where yi = −xi/x1. Since r1 6= 0, this gives two distinct ways of expanding
v1 in terms of the first basis, which contradicts the uniqueness statement
in Proposition 5.4. Hence x1 = 0. It follows immediately that all xi = 0
(why?), so v1,u2, . . . ,um are independent. The proof that v1,u2, . . . ,um
span V is left as an exercise. Hence we have produced a new basis of V where
v1 replaces u1. Now repeat the argument with the new basis by writing

v2 = x1v1 + x2u2 + · · ·+ um.

Clearly, one of the xiui in this expression is nonzero. Thus, after renum-
bering, we can assume the coefficient of u2 is nonzero. Repeating the above
argument, it follows that u2 can be replaced by v2, giving another new basis
v1,v2,u3 . . . ,um of V . Continuing this process, we will eventually replace
all the ui’s, which implies that v1, . . . ,vm must be a basis of V . But if
m < n, it then follows that vn is a linear combination of v1, . . . ,vm, which
contradicts the linear independence of v1, . . . ,vn. We thus conclude m = n,
and the Dimension Theorem is therefore proven.

There is a useful consequence of the Dimension Theorem.
Corollary 5.8. If W is a subspace of a finite dimensional vector space V ,
then W is finite dimensional, and dimW ≤ dimV , with equality exactly
when W = V . In particular, any subset of V containing more that dimV
elements is dependent.

Proof. This is an exercise.
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5.2.4 An Application

Let’s begin with a nice application of the Dimension Theorem. Let p be a
prime and consider a finite dimensional vector space V over F = Fp. Then
the dimension of V determines the number of elements of V as follows.

Proposition 5.9. The number of elements of V is exactly pdimV .

Proof. Let k = dimV and choose a basis w1, . . . ,wk of V , which we know
is possible. Then every v ∈W has a unique expression

v = a1w1 + a2w2 + · · ·+ akwk

where a1, a2, . . . , ak ∈ Fp. Now it is simply a matter of counting such expres-
sions. In fact, since Fp has p elements, there are p choices for each ai, and,
since Proposition 5.4 tells us that different choices of the ai give different
elements of V , it follows that there are exactly p · p · · · p = pk such linear
combinations. Thus V contains pk elements.

For example, a line in Fn has p elements, a plane has p2 and so forth. We
can apply the last result to a finite field F. It is clear that the characteristic
of F is positive (since F is finite), so suppose it is the prime p. By Exercise
4.12, the multiples of 1 together with 0 form a subfield with p elements. This
subfield is indistinguishable from Fp, but we will denote it by F′. It follows
from the field axioms that F is a vector space over F′. Moreover, since F
itself is finite, it follows that F is finite dimensional over F′. For every a ∈ F
has the expression a = 1a which means F spans itself over F′ since 1 ∈ F′.
Applying Proposition 5.9, we get

Proposition 5.10. Let F be a finite field of characteristic p. Then |F| = pn

where n is the dimension of F over the subfield F′ of F consisting of all
multiples of 1.

The only example of a field we have seen having pn elements, where
n > 1, is the field with 4 elements constructed in Section 4.2.1. It can be
shown that there is a field of order pn for every prime p and integer n > 0
and that this field is essentially unique.

5.2.5 Examples

Let’s next consider some more examples.

Example 5.9 (Dimension of Fm×n). As noted earlier, the vector space
Fm×n of m × n matrices over F is indistinguishable from Fmn. The matrix
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analogue of the standard basis of Fm×n is the set of m × n matrices Eij
which have a 1 in the i-th row and j-th column and a zero everywhere else.
We leave the proof that they form a basis as an easy exercise. Therefore,
dim Fm×n = mn.

Example 5.10 (Linear Systems). The fundamental identity (2.6) for an
m × n homogeneous linear system Ax = 0 can now be expressed in terms
of dimension as follows:

dimN (A) + rank(A) = n. (5.2)

We will interpret the rank of A as a dimension below.

Example 5.11 (The row space). The row space row(A) of a matrix A ∈
Fm×n is the span of its rows. The row(A) is a subspace of Fn, so clearly
dim row(A) ≤ n, by Corollary 5.8. We will relate the row space to row
operations and find its dimension in the next section.

Example 5.12 (The symmetric n×n matrices). Let Fn×ns denote the set of
symmetric n×n matrices over F. Now Fn×ns is certainly a subspace of Fn×n
(exercise). The basis of Fn×n we found in Example 5.9 doesn’t work for Fn×ns

since Eij isn’t symmetric if i 6= j. To repair this problem, put Sij = Eij+Eji
when i 6= j. Then Sij ∈ Fn×ns . I claim that the Sij (1 ≤ i < j ≤ n) together
with the Eii (1 ≤ i ≤ n) are a basis of Fn×ns . They certainly span Fn×ns

since if A = (aij) is symmetric, then

A =
∑
i<j

aij(Eij + Eji) +
∑
i

aiiEii.

We leave it as an exercise to verify that this spanning set is also independent.
In particular, counting the number of basis vectors, we see that

dim Fn×ns = (n− 1) + (n− 2) + · · ·+ 2 + 1 + n =
n∑
i=1

i = n(n+ 1)/2.

Example 5.13 (The skew symmetric matrices). The set Fn×nss of skew sym-
metric n × n matrices over F are another interesting subspace of Fn×n. A
square matrix A ∈ Fn×n is called skew symmetric if AT = −A. If the char-
acteristic of the field F is two, then skew symmetric and symmetric matrices
are the same thing, so for the rest of this example suppose char(F) 6= 2. For
example, if (

a b
c d

)T
= −

(
a b
c d

)
,
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then a = −a, d = −d, b = −c and c = −b. Thus a 2 × 2 skew symmetric
matrix has the form (

0 b
−b 0

)
.

Thus E12 − E21 is a basis. We leave it as an exercise to show dim Fn×nss =
n(n− 1)/2 for all n. We will return to these examples below.
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Exercises

Exercise 5.14. Find a basis for the subspace of R4 spanned by

(1, 0,−2, 1), (2,−1, 2, 1), (1, 1, 1, 1), (0, 1, 0, 1), (0, 1, 1, 0)

containing the first and fifth vectors.

Exercise 5.15. Let W be a subspace of V . Show that if w1, w2, . . . , wk are
independent vectors in W and v ∈ V but v 6∈ W , then w1, w2, . . . , wk, v are
independent.

Exercise 5.16. Suppose V is a finite dimensional vector space over a field
F, say dimV = n, and let W be a subspace of V . Prove the following:

(i) W is finite dimensional. (Hint: Show that if W is not finite dimen-
sional, then W contains more than n independent vectors.)

(ii) In fact, dimW ≤ dimV .

(iii) If dimW = dimV , then W = V .

This proves Corollary 5.8.

Exercise 5.17. Consider the subspace W of (F2)4 spanned by 1011, 0110,
and 1001.

(i) Find a basis of W and compute |W |.

(ii) Extend your basis to a basis of F4
2.

Exercise 5.18. Let W and X be subspaces of a finite dimensional vector
space V of dimension n. What are the minimum and maximum dimensions
that W ∩ X can have? Discuss the case where W is a hyperplane (i.e.
dimW = n− 1) and X is a plane (i.e. dimX = 2).

Exercise 5.19. Let u1,u2, . . . ,un be mutually orthogonal unit vectors in
Rn. Are u1,u2, . . . ,un a basis of Rn?

Exercise 5.20. Suppose W is a subspace of Fn of dimension k. Show the
following:

(i) Any k linearly independent vectors in W span W , hence are a basis
of W .

(ii) Any k vectors in W that span W are linearly independent, hence are
a basis of W .
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Exercise 5.21. Show that the functions

1, x, x2, x3, . . . , xn, . . .

are linearly independent on any open interval (a, b).

Exercise 5.22. Is R a vector space over Q? If so, is dimQ R finite or infinite?

Exercise 5.23. Let x ∈ Rn be any nonzero vector. Let W ⊂ Rn×n consist
of all matrices A such that Ax = 0. Show that W is a subspace and find its
dimension.

Exercise 5.24. Consider the set Fn×ns of symmetric n× n matrices over F.

(a) Show that Fn×ns is a subspace of Fn×n.

(a) Show that the set of matrices Sij with i < j defined in Example 5.12
together with the Eii make up a basis of Fn×ns .

Exercise 5.25. Let Fn×nss be the n× n skew symmetric matrices over F.

(a) Show that Fn×nss is a subspace of Fn×n.

(b) Find a basis of Fn×nss and compute its dimension.

(c) Find a basis of Fn×n which uses only symmetric and skew symmetric
matrices.

Exercise 5.26. Show that the set of n × n upper triangular real matrices
is a subspace of Rn×n. Find a basis and its dimension.

Exercise 5.27. Let V be a vector space over Fp of dimensionvn. A linearly
independent subset of V with m elements is called an m-frame in V . Show
that the number of m-frames in V with m elements is exactly (pn− 1)(pn−
p) · · · (pn−pm−2)(pn−pm−1). (Use Proposition 5.9 and use part of the proof
of the Dimension Theorem.)

Exercise 5.28. Use Exercise 5.27 to show that the number of subspaces of
dimension m in an n-dimensional vector space V over Fp is

(pn − 1)(pn − p) · · · (pn − pm−2)(pn − pm−1)
(pm − 1)(pm − p) · · · (pn − pm−2)(pm − pm−1)

.

Note: the set ofm-dimensional subspaces of a finite dimensional vector space
is an important object called a Grassmannian.
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5.3 Some Results on Matrices

We now apply the ideas invoved in the Dimension Theorem to obtain some
results about matrices.

5.3.1 A Basis of the Column Space

The Dimension Theorem (Theorem 5.7) guarantees that any spanning set of
a finite dimensional vector space contains a basis. In fact, the subsets which
give bases are exactly the minimal spanning subsets. However, there is still
the question of whether there is an explicit method for actually extracting
one of these subsets. We will now answer this for subspaces of Fn. The
method is based on row reduction.

Suppose w1, . . . ,wk ∈ Fn, and let W be the subspace they span. To
construct a subset of these vectors spanning W , consider the n × k matrix
A = (w1 . . . wk). We must find columns of A which are a basis of the
column space W = col(A). An answer is given by

Proposition 5.11. The columns of A that correspond to a corner entry
in Ared are a basis of the column space col(A) of A. In particular, the
dimension of col(A) is the number of corner entries in Ared.

Proof. The key observation is that Ax = 0 if and only if Aredx = 0 (why?).
Any nontrivial solution x gives an expression of linear dependence among
the columns of both A and Ared. (For example, if the fifth column of Ared
is the sum of the first four columns of Ared, this also holds for A.) But
the columns of Ared containing a corner entry are standard basis vectors
of Fn, hence independent. Hence the corner columns of A are also linearly
independent. On the other hand, the corner columns of Ared span column
space of Ared (but, of course, not of col(A)), so they are a basis of the column
space of Ared. Since every non corner column in Ared is a linear combination
of the corner columns of Ared, the same is true for A from what we said
above, and therefore, the corner columns in A also span col(A). The last
claim is an immediate consequence.

This result may seem a little surprising since it involves row reducing A
which of course changes col(A). We immediately get the following corollary.

Corollary 5.12. For any A ∈ Fm×n, the dimension col(A) of A is the rank
of A.
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Example 5.14. To consider a simple example, let

A =

1 2 2
4 5 8
7 8 14

 .

Then

Ared =

1 0 2
0 1 0
0 0 0

 .

Proposition 5.11 implies the first two columns are a basis of col(A). Notice
that the first and third columns are dependent in both A and Ared as we
remarked above. The vector x = (2, 0,−1)T expresses this. The Proposition
says that the first two columns are a basis of the column space, but makes
no assertion about the second and third columns, which in fact are also a
basis.

Example 5.15 (Linear Systems and Dimension). The identity originally
stated in Proposition 2.4, which says that the number of corner variables
plus the number of free variables is the total number of variables can now
be put into final form. For any A ∈ Fm×n,

dim col(A) + dimN (A) = dim Fn. (5.3)

5.3.2 The Row Space of A and the Ranks of A and AT

Recall that the row space of an m × n matrix A over F is the subspace
row(A) ⊂ Fn spanned by the rows of A. The goal of this subsection is
to relate the row space to row operations and then to derive a surprising
connection between A and AT .

We first look at how row operations affect the row space (not!).
Proposition 5.13. Elementary row operations leave the row space of A
unchanged. That is, for any elementary matrix E, row(EA) = row(A).
Consequently A and Ared always have the same row space. Moreover, the
nonzero rows of Ared are a basis of row(A). Hence

dim row(A) = rank(A).

Proof. Let E be any m ×m elementary matrix over F. We first show that
row(EA) = row(A). If E is a row swap or a row dilation, this is clear. So
we only have to look at what happens if E is an elementary row operation
of the type III. Suppose E replaces the ith row ri by r′i = ri + krj , where
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k 6= 0 and j 6= i. Since all other rows of EA and A are the same and since
r′i is itself a linear combination of two rows of A, every row of EA is a linear
combination of rows of A. Hence row(EA) ⊂ row(A). But since E−1 is also
of type III,

row(A) = row((E−1E)A) = row(E−1(EA)) ⊂ row(EA),

so row(EA) = row(A). Therefore row operations do not change the row
space, and the first claim of the proposition is proved.

It follows that the nonzero rows of Ared span row(A). We will be done
if the nonzero rows of Ared are independent. But this holds for the same
reason the rows of In are independent. Every nonzero row of Ared has a 1
in the component corresponding to its corner entry, and in this column, all
the other rows have a zero. Therefore the only linear combination of the
nonzero rows which can give the zero vector is the one where every coefficient
is zero. Hence the nonzero rows of Ared are independent. (This is the same
argument that shows the fundamental solutions of a homogeneous linear
system are independent.) Thus they form a basis of row(A), so dim row(A)
is the number of nonzero rows of Ared. Since this is also rank(A), we get
the final conclusion dim row(A) = rank(A).

The surprising connection, which you have already noticed, is
Corollary 5.14. For any m× n matrix A over a field F,

dim row(A) = dim col(A).

Therefore, the ranks of A and AT are the same.

Proof. We just saw that dim row(A) equals rank(A). But in Proposition
5.11, we also saw that dim col(A) also equals rank(A). Finally, rank(AT ) =
dim col(AT ) = dim row(A) = rank(A), so we are done.

So far, there is no obvious connection between row(A) and col(A), except
that they have the same dimension. We will see later that there is another
connection given in terms of orthogonal complements.

Let us cap off the discussion with some more examples.

Example 5.16. The 3× 3 counting matrix C of Example 2.5 has reduced
form

Cred =

1 0 −1
0 1 2
0 0 0

 .

Thus dim row(C) = 2. Clearly, the first two rows of C are a basis of row(C)
since they span and are clearly independent.
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Example 5.17. Suppose F = F2 and

A =

1 0 0 1 1 1
0 1 0 1 0 1
0 0 1 0 1 1

 .

A is already reduced so its rows are a basis of row(A), which is thus a three
dimensional subspace of F6. The number of elements in row(A) is therefore
8, by Proposition 5.9. The 7 nonzero vectors are

(100111), (010101), (001011), (110010), (101100), (011110), (1111001).

Note that all combinations of 0’s and 1’s occur in the first three components,
since the corners are in these columns. In fact, the first three components
tell you which linear combination is involved.

5.3.3 The Uniqueness of Row Echelon Form

Finally, let us return to the fact that the reduced row echelon form of an
arbitrary A ∈ Fm×n is unique . Recall that we gave a proof in Section 3.4.6,
which left some of the details to the reader. Note that the original purpose
of showing this was so that we would know that the notion of the rank of a
matrix A (as the number of nonzero rows in Ared) is well makes sense. We
now know another way of defining the rank of A, namely as dim row(A), so
knowing the uniqueness of the reduced row echelon form isn’t as crucial as
before. Let us, however, give another proof. First, we restate the result.

Proposition 5.15. The reduced row echelon form of an m × n matrix is
unique.

Proof. Suppose A ∈ Fm×n has two reduced row echelon forms R and S.
It doesn’t hurt to suppose A has rank m, so let us do so. We know, by
Proposition 5.13, that the nonzero rows of each of these matrices give bases
of row(A) as subspaces of Fn. Let ri be the i-th row of R and si the i-th
row of S. We’ll first show that the corner entries in each matrix occur in
the same place. For example, if the first corner entry in R is to the left
of the first corner entry in S, then it’s impossible to express r1 as a linear
combination of the rows of S, contradicting Proposition 5.13. Hence the first
corner entry in R cannot be to the left of that of S. By symmetry, it can’t
be to the right either, so the first corner entries are in the same column.
Now assume the first (k − 1) corner entries in each matrix are in the same
columns. If the corner entry in the k-th row of S is to the left off that in
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the k-th row of R, then, we see that writing sk =
∑
airi is impossible. The

same holds if the corner entry in the k-th row of S is to the right off that
in the k-th row of R. (Just expand rk =

∑
aisi.) Hence, by induction, the

corners in both R and S occur in the same columns, and hence in the same
entries.

Thus if we write s1 =
∑
airi, we must necessarily have a1 = 1 and ai = 0

if i > 1. For all the components of s1 corresponding to corner columns of
S are zero. But if ai 6= 0 for some i > 1, this couldn’t happen since the
ri and the si have their first nonzero entries in the same components. Now
argue again by induction. Suppose ri = si if i < k. We claim rk = sk.
Again writing sk =

∑
airi, we have ai = 0 if i < k, and ak = 1, and, by

the above reasoning, ai = 0 if i > k. This completes the induction, and
therefore R = S.
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Exercises

Exercise 5.29. In this problem, the field is F2. Consider the matrix

A =


1 1 1 1 1
0 1 0 1 0
1 0 1 0 1
1 0 0 1 1
1 0 1 1 0

 .

(a) Find a basis of row(A).

(b) How many elements are in row(A)?

(c) Is (01111) in row(A)?

(d) Find a basis of col(A).

Exercise 5.30. If A and B are n× n matrices so that B is invertible (but
not necessarily A), show that the ranks of A, AB and BA are all the same.

Exercise 5.31. True or False: rank(A) ≥ rank(A2). Explain your answer.

Exercise 5.32. Suppose A and B lie in Fn×n and AB = O. Show that
col(B) ⊂ N (A), and conclude that rank(A) + rank(B) ≤ n.

Exercise 5.33. Let A be an n × n matrix over the reals R. Which of the
following matrices have the same rank as A? Briefly explain the reason.

(a) AT ;

(b) A+AT ;

(c) ATA (hint: if ATAx = 0, note that xTATAx = |Ax|2);

(d) AAT ; and

(e) A−1.
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5.4 Intersections and Sums of Subspaces

The purpose of this chapter is to consider intersections and sums of sub-
spaces of a finite dimensional vector space. The intersection of two distinct
planes in R3 through the origin is a line through the origin. It is easy to
see that the intersection of two subspaces W and Y of a finite dimensional
vector space V is a subspace, but not so easy to see what the dimension of
this subspace is. For example, instead of the two planes in R3, consider the
possibilities for intersecting two three dimensional subspaces of R4 or R5.
The dimension can’t be more than three, but can it be zero, or is there a
lower bound as in the example of two planes?

The answer to these questions is given by the Hausdorff Intersection For-
mula, which we will prove below. The Hausdorff Intersection Formula gives
the relationship between the dimension of the intersection of two subspaces
and the dimesion of their sum (see Definition 5.4). Studying the sum of
subspaces leads directly to the notion of a direct sum, which we will also
introduce here. Direct sums will be used in the study of eigenspaces in a
later chapter.

5.4.1 Intersections and Sums

Let V be a vector space over a field F with subspacesW and Y . The simplest
way of building a new subspace is by taking the intersection W ∩ Y .
Proposition 5.16. The intersection W ∩ Y of the subspaces W and Y of
V is also a subspace of V . More generally, the intersection of any collection
of subspaces of V is also a subspace.

Proof. This is an exercise.

Proposition 5.16 is a generalization of the fact that the solution space of
a homogeneous linear system is a subspace of Fn. The solution space is the
intersection of a finite number of hyperplanes in Fn, and each hyperplane is
given by a homogeneous linear equation.

Another simple way of forming a new subspace is to take the subspace
spanned by W and Y . This is defined as follows.

Definition 5.4. The sum of W and Y is defined to be the set

W + Y = {w + y | w ∈W,y ∈ Y }.

More generally, we can form the sum V1 + · · ·+Vk of an arbitrary (finite)
number of subspaces V1, V2, · · · , Vk of V . The sum V1+ · · ·+Vk is sometimes
written as

∑k
i=1 Vi or more simply

∑
Vi.
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Proposition 5.17. If V1, V2, · · · , Vk are subspaces of V , then
∑k

i=1 Vi is
also a subspace of V . It is, in fact, the smallest subspace of V containing
every Vi.

Proof. We leave the proof as an exercise also.

5.4.2 The Hausdorff Intersection Formula

We now come to the problem of what can one say about the intersection of
two three dimensional subspaces of R4 or R5. It turns out that the answer
is a consequence of an elegant formula, which the reader may already have
guessed, that gives the relationship between the dimension of the sum W+Y
and the dimension of the intersection W ∩ Y , assuming both W and Y are
subspaces of the same finite dimensional vector space.
Theorem 5.18. If W and Y are subspaces of a finite dimensional vector
space V , then

dim(W + Y ) = dimW + dimY − dim(W ∩ Y ). (5.4)

Proof. As W ∩ Y is a subspace of V and V is finite dimensional, the Di-
mension Theorem implies W ∩ Y has a basis, say x1, . . . ,xk, and this basis
extends to a basis ofW , say x1, . . . ,xk,wk+1, . . . ,wk+r. Likewise, x1, . . . ,xk
extends to a basis of Y , say x1, . . . ,xk,yk+1, . . . ,yk+s. I claim

B = {x1, . . . ,xk,wk+1, . . . ,wk+r,yk+1, . . . ,yk+s}

is a basis of W +Y . It is not hard to see that B spans. We leave this to the
reader. To see B is independent, suppose

k∑
i=1

αixi +
k+r∑
j=k+1

βjwj +
k+s∑

m=k+1

γmym = 0. (5.5)

Thus ∑
γmym = −

(∑
αixi +

∑
βjwj).

But the left hand side of this expression lies in Y while the right hand side
is in W . It follows that ∑

γmym ∈ Y ∩W.

Thus ∑
γmym =

∑
δixi
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for some δi ∈ F. Hence ∑
δixi +

∑
(−γm)ym = 0.

Therefore, all the δi and γm are zero. In particular, (5.5) becomes the
expression ∑

αixi +
∑

βjwj = 0.

Thus all the αi and βj are 0 also, consequently, B is independent. Since B
spans W + Y , it forms a basis of W + Y , so dim(W + Y ) = k + r + s. It
remains to count dimensions. We have

dim(W + Y ) = k + r + s = (k + r) + (k + s)− k,

which is exactly dimW + dimY − dim(W ∩ Y ).

A question such as how do two three dimensional subspaces of a five
dimensional space intersect can now be settled. First, note
Corollary 5.19. If W and Y are subspaces of a finite dimensional vector
space V , then

dim(W ∩ Y ) ≥ dimW + dimY − dimV. (5.6)

In particular, if dimW + dimY > dimV , then dim(Y ∩W ) > 0.

Proof. Since W and Y are both subspaces of V , dimV ≥ dim(W +Y ). Now
apply the Hausdorff Formula.

Hence two three dimensional subspaces of a five dimensional space inter-
sect in at least a line, though the intersection can also have dimension two
or three. (Since dimV = 5, then dim(W ∩ Y ) ≥ 3 + 3− 5 = 1) However, if
dimV = 6, the above inequality only says dim(Y ∩W ) ≥ 0, hence doesn’t
say anything new.

Example 5.18 (Intersection of hyperplanes). Recall that a subspace W of
V is called a hyperplane if dimV = dimW + 1. Let H1 and H2 be distinct
hyperplanes in Fn. Then

dim(H1 ∩H2) ≥ (n− 1) + (n− 1)− n = n− 2.

But since the hyperplanes are distinct, dim(H1 ∩H2) < n− 1, so dim(H1 ∩
H2) = n− 2 exactly.

Here is a nice example.
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Example 5.19. Recall that in §5.2.5, we found bases of the subspaces Fn×ns

and Fn×nss of n × n symmetric and skew symmetric matrices, provided the
characteristic of F 6= 2. In particular, we found that dim Fn×ns = n(n+ 1)/2
and dim Fn×nss = n(n− 1)/2.

Since char(F) 6= 2, any A ∈ Fn×n can be expressed as the sum of a
symmetric matrix and a skew symmetric matrix. Namely,

A = 2−1(A+AT ) + 2−1(A−AT ). (5.7)

Thus Fn×n = Fn×ns + Fn×nss . Moreover, since char(F) 6= 2, the only matrix
that is both symmetric and skew symmetric is the zero matrix. Hence
Fn×ns ∩ Fn×nss = {0}. Hence, by the Hausdorff Intersection Formula,

dim Fn×n = dim(Fn×ns ) + dim(Fn×nss ).

This agrees with the result in §5.2.5.

As we will see in the next section, this example shows that Fn×n is the
direct sum of Fn×ns and Fn×nss . In particular, the decomposition of A in (5.7)
as the sum of a symmetric matrix and a skew symmetric matrix is unique
(provided char(F) 6= 2).

5.4.3 Direct Sums of Several Subspaces

By the Hausdorff Intersection Formula, two subspaces W and Y of V such
that dim(W ∩Y ) = 0 have the property that dim(W +Y ) = dimW +dimY ,
and conversely. This observation is related to the following definition.

Definition 5.5. We say that V is the direct sum of two subspaces W and
Y if V = W + Y and for any v ∈ V , the expression v = w + y with
w ∈ W and y ∈ Y is unique. If V is the direct sum of W and Y , we write
V = W ⊕ Y . More generally, we say V is the direct sum of a collection
of subspaces V1, . . . , Vk if V =

∑
Vi and for any v ∈ V , the expression

v =
∑

vi, where each vi ∈ Vi, is unique. (Equivalently, if 0 =
∑

vi, where
each vi ∈ Vi, then each vi = 0.) In this case, we write

V =
k⊕
i=1

Vi.

Proposition 5.20. Suppose V is finite dimensional. Then a necessary and
sufficient condition that V = W ⊕ Y is that V = W + Y and W ∩ Y = {0}.
Moreover, V = W⊕Y if and only if V = W+Y and dimV = dimW+dimY .
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Proof. First, assume V = W + Y and W ∩ Y = {0}. To see V = W ⊕ Y ,
let v have two expressions v = w + y = w′ + y′. Then w −w′ = y′ − y is
an element of W ∩ Y = {0}, so w = w′ and y′ = y. Hence V = W ⊕ Y .
On the other hand, if V = W ⊕ Y and W ∩ Y 6= {0}, then any non-zero
w ∈ W ∩ Y has two expressions w = w + 0 = 0 + w. This violates the
definition of a direct sum, so W ∩ Y = {0}. For the second claim, suppose
V = W ⊕Y . Then, dim(W ∩Y ) = 0, so the Hausdorff Intersection Formula
says dimV = dim(W + Y ) = dimW + dimY . Conversely, if V = W + Y
and dimV = dimW + dimY , then dim(W ∩ Y ) = 0, so V = W ⊕ Y .

As a consequence, we get the following general result about Fn×n, men-
tioned in the previous section.
Proposition 5.21. Assume char(F) 6= 2. Then every A ∈ Fn×n can be
uniquely expressed as in (5.7 as the sum of a symmetric matrix and a skew
symmetric matrix.

We can also extend Proposition 5.20 to any number of subspaces as
follows.
Proposition 5.22. Suppose V is finite dimensional and V1, . . . , Vk are sub-
spaces of V such that V =

∑k
i=1 Vi. Then V =

⊕k
i=1 Vi if and only if

dimV =
∑k

i=1 dimVi.

Proof. We will prove the if statement and leave the only if statement as
an exercise. Let us induct on k. If k = 1, there’s nothing to prove, so
assume the result for a k ≥ 1. Let V =

∑k+1
i=1 Vi, where V1, . . . , Vk, Vk+1 are

subspaces of V , and suppose dimV =
∑k+1

i=1 dimVi. Put W =
∑k

i=1 Vi. It is
straightforward that dimW ≤

∑k
i=1 dimVi. Since V = W + Vk+1,

dimV ≤ dimW + dimVk+1 ≤
k∑
i=1

dimVi + dimVk+1 = dimV.

It follows that dimW =
∑k

i=1 dimVi. Proposition 5.20 thus says that V =
W ⊕ Vk+1. Moreover, the induction hypothesis says W =

⊕k
i=1 Vi. Now

suppose
∑k+1

i=1 vi = 0, where each vi ∈ Vi. Then we know that
∑k

i=1 vi = 0
and vk+1 = 0. But as W =

⊕k
i=1 Vi, it follows that vi = 0 if 1 ≤ i ≤ k.

Hence V =
⊕k+1

i=1 Vi, as was to be shown.

Here is another basic example where direct sums occur.

Example 5.20 (Orthogonal Complements). For example, let V be a sub-
space of Rn. The orthogonal complement V ⊥ of V is defined to be

V ⊥ = {w ∈ Rn | w · v = 0 for all v ∈ V }.
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Orthogonal complements in Rn provide examples of direct sums, since by
Exercise 5.34, dimV + dimV ⊥ = n and V ∩ V ⊥ = {0} (why?). Thus, for
any subspace V ,

Rn = V ⊕ V ⊥. (5.8)

5.4.4 External Direct Sums

Suppose V and W be arbitrary vector spaces over the same field F. Then we
can form a new vector space V ×W containing both V and W as subspaces.

Definition 5.6. The external direct sum of V and W is the vector space
denoted by V ×W consisting of all pairs (v,w), where v ∈ V and w ∈ W .
Addition is defined component-wise by

(v1,w1) + (v2,w2) = (v1 + v2,w1 + w2),

and scalar multiplication is defined by

r(v,w) = (rv, rw).

The alert reader will have noted that F × F is nothing else than F2,
and, more generally, Fk × Fm = Fk+m. Thus the external direct sum is a
generalization of the construction of Fn. The direct sum operation can be
extended (inductively) to any number of vector spaces over F. In fact, Fn is
just the n-fold external direct sum of F.

Note also that V and W can both be considered (in a natural way) as
subspaces of V ×W (why?).
Proposition 5.23. If V and W are finite dimensional vector spaces over
F, then so is their external direct sum, and dim(V ×W ) = dimV + dimW .

Proof. We leave this as an exercise.
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Exercises

Exercise 5.34. Given a subspace W of Rn, show that W⊥ is a subspace of
Rn and describe a method for constructing a basis of W⊥.

Exercise 5.35. If W is a subspace of Rn, show that dimW + dimW⊥ = n
and conclude W ⊕W⊥ = Rn.

Exercise 5.36. Let K be a subspace of Cn, and let K⊥ denote the or-
thogonal complement of K with respect to the Hermitian inner product
(w, z) =

∑n
i=1wizi. Show that

(i) K⊥ is a complex subspace of Cn;

(ii) we have dimK + dimK⊥ = n; and

(iii) Cn = K ⊕K⊥.

Exercise 5.37. Suppose F is an arbitrary field and let W be a subspace of
Fn. Then W⊥ can be defined in exactly the same way as in the real case.

(i) Show that W is a subspace of Fn.

(ii) Show that dimW + dimW⊥ = n.

(iii) Show by example that it isn’t necessarily true that W +W⊥ = Fn.

Exercise 5.38. This exercise is used in the proof of Proposition 5.22. Show
that if a vector space V is the sum of subspaces V1, . . . , Vk, then

dimV ≤
k∑
i=1

dimVi.

Exercise 5.39. Prove the if statement of Proposition 5.22.

Exercise 5.40. Prove Proposition 5.23.
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5.5 Vector Space Quotients

We conclude this chapter with the construction of the quotient of a vector
space V by a subspace W . This construction requires that we first introduce
the general notion of a quotient space, which is based on the concept of an
equivalence relation. The particular vector space we are going to study is
denoted by V/W . Its elements are called cosets. The reader will see that
in a certain sense, the vector space V/W can be thought of as the result of
subtracting W from V (not dividing V by W ), but not too much should be
read into this statement.

5.5.1 Equivalence Relations and Quotient Spaces

The first step in defining V/W is to introduce the concept of an equivalence
relation on a set. As the reader will see, this notion equivalence is simply
a generalization of the notion of equality. First, we need to recall what a
relation on a set is. Let S be a set, and recall that S×S denotes the product
set consisting of all pairs (s, t) with s, t ∈ S.

Definition 5.7. Let S be a non-empty set. A subset E of S × S is called
a relation on S. If E is a relation on S, and a and b are elements of S, we
will say a and b are related by E and write aEb if and only if (a, b) ∈ E.
A relation E on S is called an equivalence relation when the following three
conditions hold for all a, b, c ∈ S:

(i) (E is reflexive) aEa,

(ii) (E is symmetric) if aEb, then bEa, and

(iii) (E is transitive) if aEb and bEc, then aEc.

If E is an equivalence relation on S and a ∈ S, then the equivalence class of
a is defined to be the set of all elements b ∈ S such that bEa. An element
of an equivalence class is called a representative of the class.

It follows from (ii) and (iii) that any two elements in an equivalence class
are equivalent.

Example 5.21. As mentioned above, an obvious example of an equivalence
relation on an arbitrary set S is equality. That is, sEt if and only if s = t.
The equivalence classes consist of the singletons {s}, as s varies over S.
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Example 5.22. The notion of an equivalence relation gives a new way of
defining a prime field. Let p be prime. Define an equivalence relation on
Z by saying that two integers m and n are equivalent if and only if m − n
is divisible by p. It can readily be checked that this defines an equivalence
relation. (See the proof of Proposition 5.26 below.)

Let Ep denote the set of equivalence classes. There are, in fact, p classes,
which are represented by 0, 1, . . . , p − 1. Let [m] denote the equivalence
class of m. Then we can define an addition of equivalence classes by adding
any two representatives: [m] + [n] = [m + n]. Similarly, we can define a
multiplication of equivalence classes by putting [m][n] = [mn]. One can
easily check that these binary operations are well defined. The point is that
they make Ep into a field, In fact, this field is another way of defining the
prime field Fp.

The above Example also gives a nice illustration of the following Propo-
sition.
Proposition 5.24. Let E is an equivalence relation on a set S. Then every
element a ∈ S is in an equivalence class, and two equivalence classes are
either disjoint or equal. Therefore S is the disjoint union of the equivalence
classes of E.

Proof. Every element is equivalent to itself, so S is the union of its equiva-
lence classes. We have to show that two equivalence classes are either equal
or disjoint. Suppose C1 and C2 are equivalence classes, and let a ∈ C1 ∩C2.
By definition, every element of C1 is equivalent to a, so C1 ⊂ C2 since a ∈ C2.
Similarly, C2 ⊂ C1, hence they are equal. This finishes the proof.

Definition 5.8. The set of equivalence classes in S of an equivalence relation
E is called the quotient of S by E. Sometimes this quotient will be denoted
as S/E.

5.5.2 Cosets

Suppose V be a vector space over F, and let W be a subspace. We are now
going to define an equivalence relation on V whose equivalence classes are
called cosets of W in V . The set of cosets will be denoted as V/W , and
the main result is that V/W can be made into a vector space over F. The
definition is given in the following Proposition.
Proposition 5.25. Let V be a vector space over F and let W be a subspace.
Given v and y in V , let us say that vEWy if and only if v − y ∈W . Then
EW is an equivalence relation on V .
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Proof. Clearly vEWv since v−v = 0 ∈W . If vEWy, then yEWv since W
is closed under scalar multiplication, and (y − v) = (−1)(v − y). Finally,
if vEWy and yEW z, then vEW z since v − z = (v − y) + (y − z) and W is
closed under addition. Hence EW is an equivalence relation on V .

Let v ∈ V be fixed, and define v +W to be the set of all sums v + w,
where w varies through W . That is,

v +W = {v + w | w ∈W}. (5.9)

Proposition 5.26. The cosets of W in V are precisely the sets of the form
v + W , where v varies through V . In particular, v + W = y + W if and
only if v − y ∈W .

Proof. Let C denote the equivalence class of v and consider the coset v+W .
If yEWv, then y−v = w ∈W . Hence y = v+w, so y ∈ v+W . Therefore
C ⊂ v +W . Arguing in reverse, we likewise conclude that v +W ⊂ C.

We will denote the quotient space V/EW simply by V/W . We refer to
V/W as V modulo W .

Example 5.23. The geometric interpretation of a coset is straightforward.
For example, if V = R3 and W is a plane through 0, then the coset v +W
is simply the plane through v parallel to W . The properties of Proposition
5.24 are all illustrated by the properties of parallel planes.

Our next goal is to show that V/W has a well defined addition and scalar
multiplication, which makes it into a vector spaceover F. Given two cosets
(v +W ) and (y +W ), define their sum by putting

(v +W ) + (y +W ) = (v + y) +W. (5.10)

In order that this addition be a binary operation on V/W , we have to show
that the rule (5.10) is independent of the way we write a coset. That is,
suppose v +W = v′+W and y +W = y′+W . Then we have to show that
(v + y) +W = (v′ + y′) +W . But this is so if and only if

(v + y)− (v′ + y′) ∈W,

which indeed holds due to the fact that

(v + y)− (v′ + y′) = (v − v′) + (y − y′),
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v − v′ ∈ W , y − y ∈ W W is a subspace. Therefore, addition on V/W is
well defined. Scalar multiplication on cosets is defined by

a(v +W ) = av +W, (5.11)

and, by a similar argument, scalar multiplication is also well defined.
There are two limiting cases of V/W which are easy to understand. If

W = V , then V/W has exactly one element, namely 0. On the other hand,
if W = {0}, then V/W is V , since the cosets have the form v + {0}. In this
case, defining V/W is nothing more than V , since each coset consists of a
unique element of V .

We can now prove

Theorem 5.27. Let V be a vector space over a field F and suppose W is a
subspace of V . Define V/W to be the set of cosets of W in V with addition
and scalar multiplication defined as in (5.10) and (5.11). Then V/W is a
vector space over F. If V is finite dimensional, then

dimV/W = dimV − dimW. (5.12)

Proof. The fact that V/W satisfies the vector space axioms is straightfor-
ward, so we will omit most of the details. The zero element is 0+W , and the
additive inverse −(v +W ) of v +W is −v +W . Properties such as associa-
tivity and commutativity of addition follow from corresponding properties
in V .

To check the dimension formula (5.12), let dimV = n. Choose a basis
w1, . . . ,wk of W , and extend this to a basis

w1, . . . ,wk,v1, . . . ,vn−k

of V . Then I claim the cosets v1 + W, . . . ,vn−k + W are a basis of V/W .
To see they are independent, put vi +W = yi if 1 ≤ i ≤ n− k, and suppose
there exist a1, . . . , an−k ∈ F such that

∑n−k
i=1 aiyi = 0+W . This means that∑n−k

i=1 aivi ∈W . Hence there exist b1, . . . , bk ∈ F such that

n−k∑
i=1

aivi =
k∑
j=1

bjwj .

But the fact that the vi and wj comprise a basis of V implies that all ai
and bj are zero. Therefore y1, . . . ,yn−k are independent. We leave the fact
that they span V/W as an exercise.
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One thing to notice about the quotient space V/W is that although
the above Theorem tells us its dimension, it doesn’t tell us there is natural
choice of a basis. In order to find a basis in the above proof, we first needed
a basis of W , which was then extended to a basis of V . Furthermore, the
quotient space V/W is an abstract construction. It is not a subspace of V
or W or some other natural vector space. For example, if m < n, then Fm
can be considered in a natural way to be a subspace of subset Fn, namely
the subspace consisting of all n-tuples whose last n − m components are
zero. Now Fn/Fm is vector space over F of dimension n−m, yet there is no
natural identification between Fn/Fm and Fn−m.

Cosets will appear in a concrete setting in Chapter 6 as an essential
ingredient in the construction of standard decoding tables for linear codes.
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Exercises

Exercise 5.41. Prove that the cosets α1, . . . , αn−k defined in the proof of
Theorem 5.27 span V/W .

Exercise 5.42. Let W be the subspace of V = V (4, 2) spanned by 1001,
1101, and 0110. Write down all elements of W , and find a complete set of
coset representatives for V/W . That is, find an element in each coset.

Exercise 5.43. Let A and B be arbitrary subsets of a vector space V over
F. Define their Minkowski sum to be

A+B = {x + y | x ∈ A, y ∈ B}.

Show that if A and B are cosets of a subspace W of V , then so is A+B.

Exercise 5.44. Let V and W be any two subspaces of Fn.

(i) Find a formula for dim(V +W )/W .

(ii) Are the dimensions of (V +W )/W and V/(V ∩W ) the same?

Exercise 5.45. Find a basis of the quotient R4/W , whereW is the subspace
of R4 spanned by (1, 2, 0, 1) and (0, 1, 1, 0).

Exercise 5.46. Let V be a vector space over Fp of dimension n, and let W
be a subspace of dimension k.

(1) Show that every coset of W has pk elements. (Hint: find a bijection
from W to x +W .)

(2) Show that the number of cosets of W is p(n−k).
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5.6 Summary

In the previous chapter, we introduced the notion of a vector space V over an
arbitrary field. The purpose of this chapter is to consider the basic theory of
finite dimensional vector spaces: those with a finite spanning set. We first
considered were the concepts of bases and dimension. A basis of a finite
dimensional vector space V is a subset B of V such that every vector in V
can be uniquely expressed as a linear combination of elements of B. A basis
has two properties: it spans V and is linearly independent. There are two
other ways of thinking about a basis. A basis is a minimal spanning set and
a maximal linearly independent subset of V .

We proved that every finite dimensional vector space V has a finite basis,
and any two bases of V have the same number of vectors. The dimension
of V is be defined as the number of elements in a basis of V . We also
showed that every independent subset of V is contained in a basis, and
every spanning set contains a basis.

After we introducing and proving the proerties of dimension, we con-
sidered several examples such as the row and column spaces of a matrix.
These turn out to have the same dimension, a somewhat surprising fact.
We also constructed some new vector spaces and computed their dimen-
sions. For example, if U and W are subspaces of V , we defined the sum
U +W , the smallest subspace of V containg both U and W and computed
dim(U + W ). The answer is given by the Hausdorff Intersection Formula:
dim(U + W ) = dimU + dimW − dim(U ∩ W ). We also defined what it
means to say V is the direct sum of subspaces U and W and gave examples.

Finally, we introduced the concept of the quotient of a vector space V
by a subspace W . The quotient space V/W is obtained by first defining the
notion of equivalence relation, and then considering a certain equivalence
relation on V whose elements are the cosets of W in V . The dimension of
V/W is dimV − dimW , as long as V is finite dimensional. The quotient
V/W is an abstract vector space. It doesn’t have a standard geometric
model or interpretation, even if V and W are concrete vector spaces.



Chapter 6

Linear Coding Theory

Coding theory is a relatively new branch of mathematics which has had
an enormous impact on the electronic revolution. The fundamental idea
in the subject is that it is possible to design codes (that is, packages of
binary strings) with the property that a random binary string close enough
to one of the code’s strings is only near one of the code strings. These are
called error-correcting codes. They have been extremely important for data
transmission from the time of the Mariner space probes to Venus in the
nineteen sixties and seventies to the present, when electronic devices such
as PCs, CDs, modems etc. have an enormous impact. To cite an example of
the power of error-correcting codes, one of the error-correcting codes used
by NASA for the Mariner space probes consisted of 64 strings of 32 zeros
and ones, that is 32-bit strings. This code is able to figure out which string
was transmitted even if the received string has up to seven errors. In other
words, about a quarter of the digits of a received string could be incorrrect,
and yet the correct string could be identified.

We will concentrate on a special class of codes called linear codes. A
linear codes is simply a finite dimensional vector space over a prime field.
The foundations of linear coding theory are applications of the concepts
treated in Chapter 5.

6.1 Linear Codes

The purpose of this section is to introduce some of the basic concepts in
linear coding theory. We will begin with the idea of a code. Recall that Fp
denotes the field with p elements, where p is a prime, and V (n, p) denotes
Fn, where F = Fp.
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6.1.1 The Notion of a Code

Let p be a prime.

Definition 6.1. A p-ary code is just a nonempty subset C of some V (n, p).
The integer n is called the length of C, and the elements of C are called the
codewords. The number of elements of C is denoted by |C|.

Since V (n, p) is finite, every p-ary code of length n is finite.

Proposition 6.1. The number of p-ary codes of length n is 2p
n
.

Proof. By definition, the number of p-ary codes of length n is just the num-
ber of subsets of V (n, p). But by Exercise 6.1, a set with k elements has
exactly 2k subsets, so the result follows from the fact that |V (n, p)| = pn.

We now define the notion of a linear code.

Definition 6.2. Let C be a p-ary code of length n. Then we say that the
code C is linear if C is a linear subspace of V (n, p).

Note that we will usually denote elements of V (n, p) as strings v1 . . . vn
of elements of Fp of length n. Thus 0 ≤ vi ≤ p− 1 for each index i.

Binary codes are the simplest and most pleasant to compute with, so we
will concentrate primarily on them. The elements of V (n, 2) are known as
binary strings of length n, or often n-bit strings . For example, there are 4
two-bit strings: 00, 01, 10, and 11.

In order to check that a binary code C ⊂ V (n, 2) is be linear, it suffices
to check that the sum of any two codewords is a codeword. (For example,
since C contains a codeword c and c + c = 0, the nullword 0 ∈ C.) Having
the structure of a vector space means that linear codes have much more
structure than non-linear codes.

Notice that a linear code is completely determined once a set of code-
words which spans it is given. In particular, the elements of a basis of a linear
code are called basic codewords. If dimC = k, there are k basic codewords.
We use the special notation p-ary [n, k]-code when referring to a linear C
subspace of V (n, p) having dimension k. Of course, once one know a set of
basic codewords for a linear code, one know exactly how many codewords
C contains.

Proposition 6.2. If C is a p-ary [n, k]-code, then |C| = pk.

Proof. Just apply Proposition 5.9.
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Example 6.1. The equation x1 + x2 + x3 + x4 = 0 over F2 defines a 4-bit
linear code of dimension 3, hence a binary [4, 3]-code. Thus there are 8 = 23

codewords. Rewriting the defining equation as x1 + x2 + x3 = x4, we see
that x4 can be viewed as a check digit since it’s uniquely determined by
x1, x2, x3. Here, the codewords are the 4-bit strings with an even number
of 1’s. A particular set of basic codewords is {1001, 0101, 0011}, although
there are also other choices. (How many?)

Example 6.2. Let

A =

1 0 0 1 1 1
0 1 0 1 0 1
0 0 1 0 1 1

 ,

and let C be the binary linear code of length 6 spanned by the rows of A.
That is, C = row(A). Since A is in row reduced form, its rows form a set of
basic codewords for C. Thus C is a three dimensional subspace of V (6, 2),
so |C| = 8. The 7 non zero codewords are

100111, 010101, 001011, 110010, 101100, 011110, 111001.

Notice that every possible combination of 0’s and 1’s occurs in the first three
positions, and in fact the first three letters tell you which linear combination
of the basic codewords is being used. The last three letters serve as check
digits. That is, the way to see if a 6-bit string is in the code, just find the
(unique) codeword that has the first three digits of the string to be tested,
and check if the last three digits agree. For example, 111111 isn’t a codeword
because its last three digits are 111, not 001.

6.1.2 Linear Codes Defined by Generating Matrices

A nice way to present a linear code is to display a generating matrix for the
code, such as the matrix A of the previous example.

Definition 6.3. A generating matrix for a p-ary linear [n, k]-code C is a
k × n matrix over Fp of the form M = (Ik | A) such that C = row(M).

Notice that the rows of a generating matrix are a set of basic codewords.
Not every linear code is given by a generating matrix, but there is always a
permutation of the components of C for which a generating matrix exists.
Since a generating matrix is in reduced row echelon form, a code which has
a generating matrix can only have one generating matrix.
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Example 6.3. Let C be the binary [4,2]-code with generating matrix

M =
(

1 0 1 1
0 1 0 1

)
.

Since M has rank two, |C| = 22. Taking the totality of linear combinations
of the rows, we find that

C = {0000, 1011, 0101, 1110}.

This agrees with the claim |C| = 4.

Let us expand on the comment in Example 6.2 about check digits. If M
is a generating matrix, then every element of the linear code C = row(M)
can be expressed as a matrix product of the form (x1 . . . xk)M for a suitable
choice of the xi. (To see this, transpose the fact that the column space of
MT consists of all vectors of the form MT (y1 . . . yn)T .) Let x = (x1 . . . xk),
and put c(x) = (x1 . . . xk)M . Thus,

c(x) = (x1 . . . xk

k∑
i=1

ai1xi · · ·
k∑
i=1

ai(n−k)xi).

Since x1, . . . , xk are completely arbitrary, the first k entries x1 . . . xk are
called the message digits and the last n−k digits are called the check digits.

6.1.3 The International Standard Book Number

Ever since 1969, the world’s publishers have issued an International Standard
Book Number, or ISBN, to every book they have published. An ISBN is
a 10 digit string of integers a1 · · · a9 a10 such that a1, . . . , a9 can take any
values between 0 and 9 but a10 is also allowed to take the value 10, which is
denoted by X for convenience. (Note that X is the Roman numeral standing
for 10.)

For example, the book Fermat’s Enigma by Simon Singh, published in
1997 by Penguin Books, has ISBN 0-14-026869-3. The first digit 0 indicates
that the book is in English, the next block of digits identify the publisher as
Penguin, and the next block is the set of digits that Penguin has assigned
to the title. The last digit is the check digit, which is obtained as explained
below. The major publishing companies are given shorter blocks (Penguin’s
is 14), which allows them to assign more titles. Small publishing companies
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are assigned longer blocks, hence less titles. The check digit a10 is defined by
requiring that a1 · · · a9 a10 be a solution of the homogeneous linear equation

a1 + 2a2 + 3a3 + · · ·+ 9a9 + 10a10 = 0

over F11. Hence the set of ISBNs is a subset of the 11-ary linear code [10,9]-
code defined by the above homogeneous linear equation. The generating
matrix of C is (1 2 3 4 5 6 7 8 9 10). Since 10+1 = 0 in F11, the check digit
a10 can be expressed explicitly as

a10 =
9∑
i=1

iai.

Note that the ISBN’s are only a subset of C.

Example 6.4. For example, 0-15-551005-3 is an ISBN since 0 + 2 + 15 +
20 + 25 + 6 + 0 + 0 + 453 ≡ 3mod(11), as is 0-14-026869-3 from the above
example.

Example 6.5. Suppose that an ISBN is entered as 0-19-432323-1. With
a minimum amount of technology, the machine in which the numbers are
being entered will warn the librarian that 0-19-432323-1 is not an ISBN:
that is, (0, 1, 9, 4, 3, 2, 3, 2, 3, 1) doesn’t satisfy

∑10
i=1 iai = 0 over F11. An

error has been detected, but the place where the error is hasn’t. There may
be a single incorrect digit, or two digits may have been transposed. These
two possibilities are probably the most common types of error. The next
result says something about them.

Proposition 6.3. A vector a = (a1, . . . , a10) ∈ V (10, 11) that differs from
an element of C in exactly one place cannot belong to C; in particular it can-
not be an ISBN. Similarly, an element of V (10, 11) obtained by transposing
two unequal letters of an ISBN cannot be an ISBN.

Proof. We will prove the first assertion but leave the second as an exercise.
Suppose c = (c1, . . . , c10) is a codeword which differs from a ∈ V (10, 11) in
one exactly component, say ci = ai if i 6= j, but cj 6= aj . Then

v := a− c = (0, . . . , 0, aj − cj , 0, . . . , 0).

If a ∈ C, then v−a ∈ C too, hence j(aj−cj) = 0 in F11. But since neither j
nor aj − cj is zero in Z11, this contradicts the fact that F11 is a field. Hence
a 6∈ C.
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Suppose you know all but the kth digit of an ISBN. Can you find the
missing digit? Try this with an example, say 0-13-832x44-3. This is a sure
way to mildly astound your friends and relatives and maybe win a few bets.
But don’t bet with a librarian.
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Exercises

Exercise 6.1. Show that the number of subsets of a finite set S is 2|S|.
(Hint: use the fact that the number of subsets of a set with n elements is,
by combinatorial reasoning,

∑n
k=0

(
n
k

)
. Now use the binomial theorem to

get the result.)

Exercise 6.2. Let A ∈ Fm×n, where F = F2. How many elements does
N (A) contain? How many elements does col(A) contain?

Exercise 6.3. Suppose C is the code V (n, p). What is the generating matrix
of C?

Exercise 6.4. Consider the generating matrix

A =

1 0 0 1 1 1
0 1 0 1 0 1
0 0 1 0 1 1

 .

Let us view both N (A) and row(A) as subspaces of V (6, 2). What is
dim(N (A) ∩ row(A))?

Exercise 6.5. Determine all x such that 0-13-832x4-4 is an ISBN.

Exercise 6.6. Determine all x and y such that both 1-2-3832xy4-4 and
3-33-x2y377-6 are ISBNs.

Exercise 6.7. Prove the second assertion of Proposition 6.3.
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6.2 Error-Correcting Codes

We now come to one of the fundamental ideas in coding theory, the notion
of error correcting. This is based on an extremely simple idea, namely that
one can put a distance function on codewords. The distance between two
codewords is just the number of places in which they differ. We begin by
explaining this notion in much more detail.

6.2.1 Hamming Distance

One defines the distance between u,v ∈ Rn to be |u− v|. It’s also possible
to define the distance between two elements of V (n, p) in a somewhat similar
(but different) manner.

Definition 6.4. Suppose v = v1 . . . vn ∈ V (n, p). Define the weight ω(v) of
v to be the number of nonzero components of v. That is,

ω(v) = |{i | vi 6= 0}|.

The Hamming distance d(u,v) between any pair u,v ∈ V (n, p) is defined as

d(u,v) = ω(u− v).

The Hamming distance d(u,v) will usually be refered to simply as the
distance between u and v.

Example 6.6. For example, ω(1010111) = 5. The distance

d(1010111, 1111000) = 5.

Note that the only vector of weight zero is the zero vector. Therefore
u = v exactly when ω(u− v) = 0. What makes the Hamming distance d so
useful are the properties listed in the next Proposition.
Proposition 6.4. Suppose u,v,w ∈ V (n, p). Then:

(i) d(u,v) ≥ 0, and d(u,v) = 0 if and only if u 6= v;

(ii) d(u,v) = d(v,u); and

(iii) d(u,w) ≤ d(u,v) + d(v,w).
Properties (i),(ii) and (iii) are well known for the usual distance on Rn.

Property (iii) is known as the triangle inequality , so named because in Rn

it says that the length of any side of a triangle can’t exceed the sum of the
lengths of the other two sides. In general, if S is a set, then a function
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d : S × S → R satisfying (i),(ii) and (iii) is called a metric on S, and d(s, t)
is called the distance between s, t ∈ S.

The first two properties of the Hamming distance are easy to see, but
the triangle inequality requires proof.

Proof of the triangle inequality. First consider the case where u and
v differ in every component. Thus d(u,v) = n. Let w be any vector in
V (n, p), and suppose d(u,w) = k. Then u and w agree in n−k components,
which tells us that v and w cannot agree in those n − k components, so
d(v,w) ≥ n− k. Thus

d(u,v) = n = k + (n− k) ≤ d(u,w) + d(v,w).

In the general case, let u,v,w be given, and let u′,v′ and w′ denote the
vectors obtained by dropping the components where u and v agree. Thus
we are in the previous case, so

d(u,v) = d(u′,v′) ≤ d(u′,w′) + d(v′,w′).

But d(u′,w′) ≤ d(u,w) and d(v′,w′) ≤ d(v,w) since taking fewer compo-
nents decreases the Hamming distance. Therefore,

d(u,v) ≤ d(u,w) + d(v,w),

and the triangle inequality is established.

Let d(C) denote the minimum distance between any two distinct code-
words. That is,

d(C) = min{d(c, c′) | c, c′ ∈ C, c 6= c′}.

In general, d(C) has to be computed by finding the distance between every
pair of distinct codewords. If there are m codewords, this requires(

m
2

)
=
m(m− 1)

2

calculations (check this). But if C is linear, finding d(C) requires a lot fewer
operations.
Proposition 6.5. If C ⊂ V (n, p) is linear, then d(C) is the minimum of
the weights of all the non zero codewords. That is,

d(C) = min{ω(c) | c ∈ C, c 6= 0}.

Proof. We will leave this as an exercise.
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6.2.2 The Key Result

We first mention some common notation incorporating the minimal distance.
Coding theorists refer to an arbitrary code C ⊂ V (n, p) such that |C| = M
and d(C) = d as a p-ary (n,M, d)-code . If C is linear, we know that
|C| = M = pk where k is the dimension of C. In that case, they say C is a
said to be p-ary [n, k, d]-code. As the next result shows, in designing codes,
the game is to make the minimal distance d(C) as large as possible for a
given M . The reason for this is the next result.
Proposition 6.6. An (n,M, d)-code C can detect up to d− 1 errors, i.e. if
c ∈ C and d(v, c) ≤ d− 1 for some v ∈ V (n, p), then either v = c or v 6∈ C.
Moreoever, C corrects up to e = [(d − 1)/2] errors, where [r] denotes the
greatest integer less than r. That is, if v is not a codeword, then there is at
most one codeword c such that d(v, c) ≤ e.

Proof. We will leave the first assertion as an exercise but prove the harder
second assertion. Assume v is not a codeword and d(v, c) ≤ (d − 1)/2,
for some codeword c. Suppose also that there exists a c′ ∈ C such that
d(v, c′) ≤ d(v, c). If c 6= c′, then, by definition, d(c, c′) ≥ d. But, by the
triangle inequality,

d(c, c′) ≤ d(c,v) + d(v, c′) ≤ (d− 1)/2 + (d− 1)/2 = d− 1.

This is impossible, so we conclude c = c′.

If v 6∈ C, but d(v, c) ≤ e, then we say c is error-correcting for v. The
conclusion about error-correction means that if all but e digits of a codeword
c are known, then every digit of c is known.

Example 6.7. Suppose C is a 6-bit code with d = 3. Then e = 1. If
c = 100110 is a codeword, then v = 000110 can’t be, but 100110 is the
unique codeword within Hamming distance 1 of 000110.

Example 6.8. For the binary [4,3]-code given by x1 +x2 +x3 +x3 +x4 = 0,
one can check that d(C) = 2. Thus C detects a single error, but we don’t
know that it can correct any errors because (d−1)/2 = 1/2 < 1. However, if
some additional information is known, such as the unique component where
an error occurs, then the error can be corrected using the linear equation
defining the code.
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Exercises

Exercise 6.8. Consider the binary code C ⊂ V (6, 2) which consists of
000000 and the following nonzero codewords:

(100111), (010101), (001011), (110010), (101100), (011110), (111001).

(i) Determine whether or not C is linear.

(ii) Compute d(C).

(iii) How many elements of C are nearest to (011111)?

(iv) Determine whether or not 111111 is a codeword. If not, is there a
codeword nearest 111111?

Exercise 6.9. Show that for every k between 0 and n, there exists a linear
code C ⊂ V (n, 2) such that that d(C) = k .

Exercise 6.10. Prove the first part of Proposition 6.6.

Exercise 6.11. Compute d(C) for the code C of Example 6.2.

Exercise 6.12. Consider the binary code C7 defined as the row space of
the matrix

A =


1 0 0 0 1 1 1
0 1 0 0 1 1 0
0 0 1 0 1 0 1
0 0 0 1 0 1 1

 .

in V (7, 2).

(i) Compute d(C) and e.

(ii) Find the unique element of C that is nearest to 1010010. Do the same
for 1110001.

(iii) Find d(N (A)).

Exercise 6.13. Prove Proposition 6.5. That is, show that if C ⊂ V (n, p)
is linear, then d(C) is the minimum of the weights of all the non zero code-
words.

Exercise 6.14. Can Proposition 6.3 be deduced from Proposition 6.6?
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6.3 Codes With Large Minimal Distance

The purpose of this section is to give some examples of codes with a large
minimal distance. We will also prove an inequality which shows that d(C)
cannot be arbitrarily large.

6.3.1 Hadamard Codes

We will begin with an interesting construction of a family of binary codes
based on a class of matrices named after the French mathematician, J.
Hadamard. These codes which have the property that d(C) is impressively
large compared with |C|.

Definition 6.5. An n × n matrix H over R whose only entries are ± 1 is
said to be Hadamard if and only if HHT = nIn.

It is easy to see that HHT = nIn if and only if HTH = nIn.

Example 6.9. Examples of n× n Hadamard matrices for n = 2, 4, 8 are

H2 =
(

1 1
1 −1

)
, H4 =


1 1 1 1
1 1 −1 −1
1 −1 −1 1
1 −1 1 −1

 ,

and

H8 =



1 1 1 1 1 1 1 1
1 1 −1 −1 1 1 −1 −1
1 −1 −1 1 1 −1 −1 1
1 −1 1 −1 1 −1 1 −1
1 1 −1 −1 −1 −1 1 1
1 −1 −1 1 −1 1 1 −1
1 1 1 1 −1 −1 −1 −1
1 −1 1 −1 −1 1 −1 1


.

After this point, it is no longer instructive to write them down. One can
produce other Hadamard matrices from these by the transformation H 7→
PHQ, where P and Q are permutation matrices.

Proposition 6.7. If H is an n× n Hadamard matrix, then:

(i) any two distinct rows or any two distinct columns are orthogonal;

(ii) if n > 1, then any two rows of H agree in exactly n/2 places; and
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(iii) n is either 1, 2 or a multiple of 4.

The first two parts are easy. We will leave the third part as a challenging
exercise. An interesting point is the fact that it’s still an open problem as
to whether there is a 4k× 4k Hadamard matrix for every k > 0. Hadamard
matrices exist for k ≤ 106, but, at this time, it doesn’t seem to be known
whether there is a 428 × 428 Hadamard matrix. On the other hand, it is
also known that if n is a power of two, then there exists an n×n Hadamard
matrix, so aritrarily large Hadamard matrices exist also.

Hadamard codes are defined as follows. Let H be Hadamard, and con-
sider the n×2n matrix (H|−H). Define H to be the binary matrix obtained
by replacing all −1’s by 0’s. That is, H ∈ (F2)n×2n. The Hadamard code C
associated to H is by definition the set of columns of H. Thus a Hadamard
code is a binary n-bit code with 2n-codewords.
Proposition 6.8. Let C be an n-bit Hadamard code. Then d(C) = n/2.

Proof. Recall that n is a multiple of 4, so n/2 is an even integer. The fact
that the ith and jth columns of H are orthogonal if i 6= j implies they must
differ in exactly n/2 components since all the components are ±1. But the
ith and jth columns of H and −H are also orthogonal if i 6= j, so they
differ in n/2 places too. Moreover, the ith columns of H and −H differ in
n places. This proves d(C) = n/2, as asserted.

In the notation of Section 6.2.2, C is a binary (n, 2n, n/2)-code. For
example, the Hadamard matrix H2 gives the (2, 4, 1)-code(

1 1 0 0
1 0 0 1

)
.

The code that was used in the transmission of data from the Mariner space
probes to Venus in the 1970’s was a binary (32, 64, 16) Hadamard code.
Since (16− 1)/2 = 7.5, this code corrects 7 errors.

6.3.2 A Maximization Problem

Designing codes such as Hadamard codes, where d(C) is large compared to
|C|, is one of the basic problems in coding theory. Consider the following
question. What is the maximum value of |C| among all binary codes C ⊂
V (n, 2) of length n such that d(C) ≥ m for a given integer m? If we impose
the condition that C is linear, we’re actually seeking to maximize dimC,
since |C| = pdim(C). The binary [8, 4, 4]-code C8 of the next example is such
a code.
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Example 6.10. Let

A =


1 0 0 0 1 1 1 0
0 1 0 0 1 1 0 1
0 0 1 0 1 0 1 1
0 0 0 1 0 1 1 1

 .

The row space C8 of A is called the extended Hamming code. Notice that
every row of A has weight 4, so the minimum distance of C8 is at most 4.
It can be seen (for example by enumerating the elements) that d(C8) = 4.
Hence C8 is a binary [8, 4, 4]-code.

Proposition 6.9. The code C8 with 16 codewords maximizes |C| among
all 8-bit binary linear codes with d(C) ≥ 4.

Proof. Since dimC8 = 4, we have to show that there are no 8-bit binary
linear codes C with d(C) ≥ 4 and dimC ≥ 5. Suppose C is such a code. By
taking a spanning set for C as the rows of a k× 8 matrix A, we can use row
operations to put A into reduced row echelon form Ared without changing
C. By reordering the columns for convenience, we can suppose Ared has the
form (Ir|M), where r ≥ 5. Hence M has at most three columns. But the
only way we can have d(C) ≥ 4 is if all entries of M are 1. Then subtracting
the second row of Ared from the first gives an element of C having weight
2, contradicting d(C) ≥ 4. Thus 4 is the maximum dimension of any such
C in V (8, 2).

A similar argument gives the well known singleton bound.
Proposition 6.10. If C is a p-ary [n, k]-code, then

d(C) ≤ n− k + 1.

Put another way, a linear code C of length n satisfies

dimC + d(C) ≤ n+ 1.

We leave the proof as an exercise. A linear [n, k]-code C with d(C) =
n− k + 1 is said to be maximal distance separating.
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Exercises

Exercise 6.15. Suppose H ∈ Rn×n is a ± 1 matrix such that HTH = nIn.
Show that H is Hadamard.

Exercise 6.16. Prove parts (i and (ii) of Proposition 6.7.

Exercise 6.17. * Prove that the order of a Hadamard matrix is 1, 2 or a
multiple of 4.

Exercise 6.18. Let r be a positive integer and define the ball Br(a) ⊂
V (n, 2) about a ∈ V (n, 2) to be

Br(a) = {x ∈ V (n, 2) | d(x,a) ≤ r}.

Show that

|Br(x)| =
r∑
i=0

(
n

i

)
.

Exercise 6.19. Generalize Exercise 6.18 from V (n, 2) to V (n, p).

Exercise 6.20. * Show that if C is a linear binary [n, k]-code and C is
e-error-correcting , then

e∑
i=0

(
n
i

)
≤ 2(n−k).

In particular, if C is 1-error-correcting , then |C| ≤ 2n/(1 + n).

Exercise 6.21. Show that if P is a permutation matrix, then right multipli-
cation by P defines a transformation T : V (n, p) → V (n, p) which preserves
the Hamming distance.

Exercise 6.22. Prove the singleton bound, Proposition 6.10. (Suggestion:
try to imitate the proof of Proposition 6.9.)

Exercise 6.23. For each n and k, find an example of a maximal distance
separating p-ary [n, k]-code.



170

6.4 Perfect Linear Codes

In this section, we will consider an important class of codes, called per-
fect codes. These are codes where the codewords are uniformly distributed
throughout V (n, p) in some sense. Chief among these codes are the Ham-
ming codes, which are the linear codes with minimal distance 3 or 4 hence
e = 1, such that every element of V (n, p) is within Hamming distance 1 of
a codeword (which is unique, by Proposition 6.6).

6.4.1 A Geometric Problem

The basic result Proposition 6.6 on error-correcting codes can be given a
pretty geometric interpretation as follows. If r > 0, define the ball of radius
r centred at v ∈ V (n, p) to be

Br(v) = {w ∈ V (n, p) | d(w,v) ≤ r}. (6.1)

Suppose we put r = e = [(d(C)− 1)/2]. Then Proposition 6.6 implies
Proposition 6.11. If a code C ⊂ V (n, p) satisfies d(C) = d, then for every
c ∈ C,

Bd−1(c) ∩ C = {c}.

Furthermore, if d ≥ 3 so that e ≥ 1, then an element v ∈ V (n, p) which
lies in one of the balls Be(c) lies in exactly one of them. In particular, if
c, c′ ∈ C and c 6= c′, then Be(c) ∩Be(c′) = ∅.

The union of the balls Be(c) as c varies over C is the set of elements of
V (n, p) which are within e of a (unique) codeword. The nicest situation is
when these balls cover V (n, p); that is,

V (n, p) =
⋃
c∈C

Be(c). (6.2)

Now let C ⊂ V (n, p) be a code, but not necessarily a linear code.

Definition 6.6. A code C ⊂ V (n, p) is said to be perfect if (6.2) holds.
That is, C is perfect if and only if every element of V (n, p) is within e of a
(unique) codeword.

We will give a number of examples of binary Hamming codes, and we
will show below that in fact there exist infinitely many such codes. On the
other hand, it turns out that perfect linear codes such that e > 1 are not so
abundant. The only other possibilities are a binary [23, 12]-code with e = 3
and a ternary [11, 6]-code with e = 2.
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Example 6.11. Consider the binary linear code C3 = {000, 111}. Note
d = 3 so e = 1. Now

V (3, 2) = {000, 100, 010, 001, 110, 101, 011, 111}.

The first 4 elements are within 1 of 000 and the last 4 are within 1 of 111.
Therefore C is perfect, so C is a Hamming code.

We will give a more convincing example of a perfect linear code after we
give a numerical criterion for perfection.

6.4.2 How to Test for Perfection

It turns out that there is a simple test that tells when a linear code is perfect.
For simplicity, we’ll only consider the binary case.

Proposition 6.12. Suppose C ⊂ V (n, 2) is a linear code with dimC = k
and d ≥ 3. Then C is perfect if and only if

e∑
i=0

(
n
i

)
= 2(n−k). (6.3)

In particular, if e = 1, then C is perfect if and only if

(1 + n)2k = 2n. (6.4)

Proof. Since |V (n, 2)| = 2n, C is perfect if and only if∑
c∈C

|Be(c)| = 2n.

By an obvious count,

|Be(v)| =
e∑
i=0

(
n
i

)
for any v ∈ V (n, 2). Since |Be(c) ∩ Be(c′)| = 0 for any pair of distinct
codewords c and c′ and |C| = 2k, we infer that C is perfect if and only if

2k
e∑
i=0

(
n
i

)
= 2n.

This gives the result.



172

Notice that |Be(c)| actually has nothing to do with C. The problem
of finding a perfect binary code actually reduces to finding a binary [n, k]-
code such that |Be(0)| = 2(n−k). If d(C) = 3 or 4, then C is perfect if and
only if n = 2n−k − 1, where k = dimC. Some possible solutions for these
conditions are n = 3, k = 1 and n = 7, k = 4. The first case is settled by
C = {000, 111}. The next example shows that a perfect binary code with
n = 7 and k = 4 can also be realized.

Example 6.12. Consider the 7-bit code C7 defined as the row space of

A =


1 0 0 0 1 1 1
0 1 0 0 1 1 0
0 0 1 0 1 0 1
0 0 0 1 0 1 1

 .

By enumerating the 16 elements of C7, one sees that d(C7) = 3, so e = 1.
Since (7 + 1)24 = 27, C7 is indeed perfect.

6.4.3 The Existence of Binary Hamming Codes

In this Section, we will show there exist infinitely many binary Hamming
codes. This is done by actually constructing them. Let C ⊂ V (n, 2) be such
a code. Then since e = 1, we know that 1 + n = 2n−k, where k = dim(C).
Putting r = n − k, we have n = 2r − 1, and k = n − r = 2r − r − 1. Thus
the pairs (n, k) representing the length of C and its dimension take the form
(2r − 1, 2r − 1 − r), so some values are (3, 1), (7, 4), (15, 11) and (31, 26).
Hamming codes for (3, 1) and (7, 4) have already been constructed. We will
now show how to obtain the rest.

Let r be an arbitrary positive integer, and, as above, put n = 2r − 1
and k = n − r. Form the r × n matrix A = (Ir | B), where the columns
of B are the nonzero elements of V (r, 2) of weight at least two written as
column strings and enumerated in some order. Let C ⊂ V (n, 2) consist
of the strings c = c1c2 · · · cn such that AcT = 0. Since A has rank r,
dimC = n− r = 2r − 1− r. Thus, by construction, 1 + n = 2n−k, so C is a
Hamming code as long as d(C) = 3.

We can see d(C) = 3 as follows: since A is in reduced row echelon form,
the system Ax = 0 has fundamental solutions of weight three. For example,
since the weight two vector (110 · · · 0)T is one of the columns of A, say
the qth column, then the string defined by x1 = x2 = xq = 1 and xi = 0
otherwise lies in C. On the other hand, no element of C can have weight one
or two. One is obvious, and two cannot happen since for any i, j between 1
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and n, there is a row of A with 1 in the ith column and 0 in the jth column.
That is, if c is an n-bit string of weight two, then AcT 6= 0.

To see the above claims more concretely, suppose r = 3 and

A =

1 0 0 1 1 0 1
0 1 0 1 0 1 1
0 0 1 0 1 1 1

 .

Then the general solution of Ax = 0 has the form

x = x4



1
1
0
1
0
0
0


+ x5



1
0
1
0
1
0
0


+ x6



1
1
1
0
0
1
0


+ x7



0
1
1
0
0
0
1


,

so there exist codewords of weight 3 such as 1101000. However, by a direct
check, there can’t be any codewords of weight 1 or 2, so d(C) = 3.

The code C constructed above is a special type of code known as a dual
code . In general, if A is an arbitrary m×n matrix over Fp and C ⊂ V (n, p)
is the code row(A), then the code

C⊥ = {c ∈ V (n, p) | AcT = 0}

is called the code dual to C.
Summarizing the above discussion, we have

Proposition 6.13. Let r be any positive integer, and put n = 2r − 1.
Suppose A = (Ir | B), where B is the r × n matrix over F2 whose columns
are the binary column vectors of weight at least two enumerated in some
order. Then the code C dual to row(A) is a binary Hamming code of length
n and dimension k = n− r = 2r − 1− r.

This Proposition shows that there exists a binary Hamming code of
length 2r− 1 for every r > 0. In particular, there are infinitely many binary
Hamming codes, as claimed above.

6.4.4 Perfect Codes and Cosets

We will now find a connection between perfect linear codes and cosets which
will be useful when we introduce the standard decoding table . The culmi-
nation of this section will be a characterization of when a linear code C is
perfect in terms of the cosets of C.
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The notion of a coset of a subspace W of a vector space V was introduced
in Definition 5.5.2. In fact, we noticed that every coset of W , which is by
definition an equivalence class of a certain equivalence relation on V , must
have the form v+W , for some v ∈ V . A coset of W therefore has a concrete
geometric interpretation, namely as the translation v + W of W by v. Of
course, it therefore makes sense to speak of the number of elements of a
coset, which is obviously |W | no matter what v is. (In fact, w 7→ v + w
is a bijection between W and v +W . Since we know any two cosets of the
same subspace W are either equal or disjoint (by Proposition 5.26), we have
proved

Proposition 6.14. Let V be a vector space over Fp of dimension n, and
let W be a linear subspace of V of dimension k. Then the number of cosets
of W in V is exactly p(n−k).

Proof. We gave one proof just before the statement of the result. Here is
another proof. By Theorem 5.27, the set of cosets V/W is a vector space
over Fp of dimension n− k. Thus, |V/W | = p(n−k), by Proposition 5.9.

Before getting to the connection between perfect codes and cosets, let us
also record a useful property of the Hamming metric. Namely, the Hamming
metric is translation invariant. That is, for all w,x,y ∈ V (n, p),

d(w + y,x + y) = d(w,x).

Indeed,

d(w + y,x + y) = ω(w + y − (x + y)) = ω(w − x) = d(w,x).

Now let C ⊂ V (n, p) be a linear code with d ≥ 3. We can use the
translation invariance property to show

Proposition 6.15. No coset of C contains more than one element of Be(0).
In particular, |Be(0)| ≤ p(n−k), where k = dimC.

Proof. Suppose to the contrary that Be(0) contains two elements of x +C,
say x + c and x + c′. Then, by translation invariance,

d(x + c,x + c′) = d(c, c′) ≤ d(c,0) + d(c′,0) ≤ 2e.

But this is impossible, so the first statement is proved. For the second, just
apply Proposition 6.14.

Now we come to the main result.
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Theorem 6.16. A linear code C ⊂ V (n, p) with d ≥ 3 is perfect if and only
if every coset x + C of C contains an element of Be(0).

Proof. Suppose C is perfect, and consider a coset x + C. By (6.2), x + C
meets some Be(c), hence there exists a c′ ∈ C such that x + c′ ∈ Be(c).
By translation invariance, d(x + c′, c) = d(x + (c′ − c),0) ≤ e, so x +
(c′ − c) ∈ Be(0). Hence x + C meets Be(0). For the sufficiency, suppose
y ∈ V (n, p). Let x = y + c be the element of y + C contained in Be(0).
Then d(x,0) = d(x− c,−c) = d(y,−c) ≤ e, so y ∈ Be(−c). Thus we have
(6.2), so C is perfect.

Of course, by the previous Proposition, the element of x+C in Be(0) is
unique.

6.4.5 The hat problem

The hat problem is an example of an instance where the existence of a
particular mathematical structure, in this case a Hamming code, has a sur-
prising application. In the hat game, there are three players each wearing
either a white hat or a black hat. Each player can see the hats of the other
two players, but cannot their own hat is. Furthermore the players aren’t
allowed to communicate with each other during the game. Each player has
three buttons marked B,W and A (for abstain or no guess). At the sound
of the buzzer, each player presses one of their buttons. The rule is that if
at least one player guesses their own hat color correctly and nobody guesses
incorrectly, they share a $1,000,000 prize.

The players are allowed to formulate a strategy before the game starts.
The question is how should they proceed to maximize their chances of win-
ning. One strategy would be to have two players abstain and to have the
third make a random guess. The probability of winning with this strategy
is a not bad 1/2. But this strategy doesn’t make any use of fact that each
player can see the hats of the other two players.

Consider the following strategy: when a player sees that the other two
players have the same colored hats, they guess theirs is the opposite color.
If they see different colored hats, they abstain. With this strategy, the only
losing hat configurations are BBB or WWW, so they win six out of eight
times. Here the probability of winning is a much improved 3/4.

What does this strategy have to do with perfect codes? Recall that C =
{000, 111} is a Hamming code. If 0 represents Black and 1 represents White,
then the various hat arrays are represented by the 23 3-bit strings. Since e =
1, the above strategy amounts to the following. The three contestants agree
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ahead of time to assume that the hat configuration isn’t in C. That is, the
hats aren’t all white or all black. Suppose this assumption is correct. Then
two players will see a black and a white. They should automatically abstain
since there is no way of telling what their own hat colors are. The third will
see either two blacks or two whites. If two blacks, then by assumption, she
knows her hat is white and she hits the W button. If she sees two whites,
then she hits the B. This strategy fails only when all hats are the same color,
i.e. the hat configuration lies in C.

Next, suppose there are 7 players instead of 3. Recall, we displayed a
perfect linear binary code (namely C7) of length 7 with 16 codewords and
minimum distance 3. We continue to represent Black by 0 and White by
1, so the possible hat arrays are represented by the 27 7-bit strings. Let’s
see if the strategy for three hats works with seven hats. First, all players
need to know all 16 codewords. They agree beforehand to assume the hat
array isn’t in C7. This happens in 7/8 cases, since the probability that the
hat array is in C7 is 24/27 = 1/8. Thus what they need to do is devise a
winning strategy for those times their array isn’t in C7.

Suppose their assumption is correct. Let x1 . . . x7 denote their the hat
array. Since C7 is perfect with e = 1, they know that x1 . . . x7 differs in
exactly one place from a codeword. Let’s see what happens if the difference
occurs in the first bit. Then c1x2 . . . x7 ∈ C7, where c1 6= x1. The first player
sees x2 . . . x7, and, knowing c1x2 . . . x7 ∈ C7, guesses correctly that her hat
color is x1. The second player sees x1x3 . . . x7 and realizes that x1y2x3 . . . x7

isn’t in C for either value of y2. Therefore, she has to pass. The other five
contestants face similar situations and reason in the same way. With this
strategy, their probability of winning the million bucks is 7/8.

Can you devise a strategy for how to proceed if there are 4,5 or 6 players?
What about 8 or 9? More information about this problem and other related
(and more serious) problems can be found in the article The hat problem
and Hamming codes by M. Bernstein in Focus Magazine, November 2001.

6.4.6 The Standard Decoding Table

To end this section, we introduce a decoding scheme called the standard
decoding table which is closely related to some of the topics of the previous
Section.

Let C be a binary linear code of length n, which is being used to transmit
data from a satellite. If a codeword c = c1 . . . cn is transmitted and an n-bit
string d 6= c is received, the problem is to discover the value of the error
e = d − c. We will now consider a scheme for doing this, known as the
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nearest neighbour decoding scheme , which uses the cosets of C to organize
V (n, 2) into a standard decoding table (SDT for short).

To construct the standard decoding table we write the down the cosets
x +C of C in a specific manner as follows. In the first row of the table, list
the elements of C in some order, being sure to put 0 in the first column.
Say the result is 0, c1, c2, . . . , cm, where m = |C| − 1. The next step is to
choose an element a1 ∈ V (n, p) which isn’t in C. The second row of the
table is then the coset a1,a1 + c1,a1 + c2, . . . ,a1 + cm. For the third row,
choose another a2 which hasn’t already appeared in the first two rows, and
proceed as before. Since the cosets of C in V (n, 2) are pairwise disjoint and
their union is V (n, 2), this construction leads to a table with 2n−k rows and
2k columns, where k = dimC, which contains all elements of V (n, 2).

The final step is to impose the condition that any two elements in the
same row (i.e. coset) have the same error, namely the element in the leading
column.

Example 6.13. The following table is a standard decoding table for the
linear code C ⊂ V (4, 2) of Example 6.3.

0000 1011 0101 1110
1000 0011 1101 0110
0100 1111 0001 1010
0010 1001 0111 1100

.

Note that since |C| = 4 and |V (4, 2)| = 16, the table is 4 × 4. If the
transmitted codeword c is received for example as d = 0111, the decoding
procedure is to scan the standard decoding table until 0111 is located. Since
0111 occurs in the last row, the error is the leading element 0010 and c is
the codeword in the first row of the table above 0111.

A typical strategy for choosing the coset representatives ai is to always
choose elements for the first column of minimal weight among the possible
choices. This reflects the assumption that the error isn’t too serious. Notice
that it can happen that a row of a standard decoding table contains more
than one element of minimal weight, so the choice is of representatives isn’t
necessarily unique. This happens in the third row of the above table, for
example. This row has two elements of weight one, and there is no reason
to prefer decoding 1111 as 1011 rather than 1110.

The non zero elements of least nonzero weight in V (n, 2) are the standard
basis vectors e1, . . . , en. If dimC = k, then at most k of the standard basis
vectors can lie in C. Those which don’t are therefore natural candidates for
the leading column.
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It seems desirable to seek codes C for which there is a standard decoding
table such that in each row, there is a unique vector of weight one. The
codes with this property are exactly the Hamming codes, since as we just
saw, Hamming codes have the property that every coset contains exactly
one element of Be(0). But Be(0) consists of the null word and the standard
basis vectors (i.e. elements of weight one) since e = 1. Since the third row
of the table in Example 6.13 contains two elements of weight one, C isn’t
perfect.
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Exercises

Exercise 6.24. Consider the code C = {00000, 11111} ⊂ V (5, 2).

(i) Determine e.

(ii) Show that C is perfect.

(iii) Does C present any possibilities for a five player hat game?

Exercise 6.25. Show that any binary [2k − 1, 2k − 1− k]-code with d = 3
is perfect. Notice C7 is of this type.

Exercise 6.26. Can there exist a perfect binary [5, k, 5]-code?

Exercise 6.27. Suppose n ≡ 2mod(4). Show that there cannot be a perfect
binary [n, k]-code with e = 2.

Exercise 6.28. Show that any binary [23, 12]-code with d = 7 is perfect.

Exercise 6.29. Let F be any field, and letM = (Ik A), where A ∈ Fk×(n−k).
A parity check matrix for M is an n× (n−k) matrix H over F of rank n−k
such that MH = O.

(i) Show that H =
(
−A
In−k

)
is a parity check matrix for M .

(ii) Conclude that a parity check matrix has the property that

N (M) = col(H)

as subspaces of Fn.

Exercise 6.30. In this Exercise, we will view Fn as the set of row vectors
with n components in F. Let M and H be as in Exercise 6.29, and let
C ⊂ Fn denote the row space of M . Show that if d1 and d2 are in Fn, then

d1H = d2H

if and only if d1 + C = d2 + C. Thus the parity check matrix H takes the
same value dH on each coset d + C of C and different values on different
cosets.

Exercise 6.31. The previous two exercises can be applied to standard de-
coding tables as follows. Consider the linear code C ⊂ V (n, p) defined as
the row space of M = (Ik A), where A ∈ (Fp)k×(n−k). Define the syndrome

of the coset d + C to be dH, where H =
(
−A
In−k

)
is the above parity check
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matrix for M . By Exercise 6.30, the syndrome of d +C is well defined. By
the definition of a standard decoding table , this means that two elements of
V (n, p) are on the same row if and only if they have the same syndrome. A
standard decoding table with syndromes for C is a standard decoding table
for C with an extra column which gives the syndromes of the rows. The
advantage of knowing the syndromes of the cosets is that to find which row
d ∈ V (n, p) is in, one just scans the last column to find the row containing
dH. Construct the standard decoding table with syndromes for the linear
code of Example 6.3 starting from the standard decoding table of Example
6.13.

Exercise 6.32. Construct the parity check matrix and syndromes for C7.

Exercise 6.33. Construct the standard decoding table with syndromes for
the binary code C with generating matrix1 0 0 1 1 1

0 1 0 0 1 0
0 0 1 1 0 1

 .

(Note, this is rather complicated since C has 8 elements. Thus the standard
decoding table with syndromes is an 8× 9 table (counting the syndromes as
one column) since V (6, 2) has 64 elements. )

Exercise 6.34. Construct the standard decoding table with syndromes for
the binary code with generating matrix(

1 0 1 0
0 1 0 1

)
.

Exercise 6.35. Let C be a binary linear n-bit code with n ≥ 3 with parity
check matrix H. Show that if no two columns of H are dependent (i.e.
equal), then d(C) ≥ 3.

Exercise 6.36. Generalize Exercise 6.35 by showing that if C ⊂ V (n, p) is
a linear code with a parity check matrix H having the property that no m
columns of H are linearly dependent, then d(C) ≥ m+ 1.

Exercise 6.37. Show that any coset of the linear code which contains the
ISBNs contains a unique standard basis vector. In particular, any element
of V (10, 11) differs form an element of C in just one component.
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Exercise 6.38. Find an upper bound on the number of operations required
to scan the standard decoding table with syndromes associated to an p-ary
[n, k] -code to find any d ∈ V (n, p), and compare this result to the number
of operations needed to find d before adding the column of syndromes.
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6.5 Summary

This chapter gives a brief introodution to the subject of coding theory, which
is a branch of mathematics with close ties to computer science and electrical
engineering. A code is a subset C of some V (n, p), and a linear code is
a linear subspace. The elements of the code are the codewords. Linear
coding theory provides an excellent (not to mention beautiful) realization of
many of the topics we’ve already studied in elementary linear algebra: row
operations, dimension, bases, cosets etc. The key concept is the notion of
the Hamming distance, which is a natural metric on V (n, p). The Hamming
distance between two elements of V (n, p) is the number of components where
the two elements differ. The minimal distance d(C) of a code C is the least
distance between any two codewords. The main goal in coding theory is
to devise codes C where d(C) is large. In fact, the first basic result on
error-correcting codes says that an element x of V (n, p) can have distance
d(x, c) ≤ e = (d(C)− 1)/2 from at most one codeword c.

A linear code such that every element of V (n, p) is within e of a codeword
is called perfect. A perfect code with e = 1 is called a Hamming code.
Hamming codes have the property that every element of V (n, p) is either
a codeword or one unit from a codeword. We show there are infinitely
many Hamming codes. (Surprisingly, there are only two examples of perfect
codes where the minimum distance is greater than 4.) We show that the
question of whether or not a linear code is perfect comes down to solving a
combinatorial condition (6.3), and we also give an amusing (and surprising)
application of Hamming codes to the question of whether you know what
color the hat you’re wearing is.

We also treat some other topics. Cosets come up in the idea of the
nearest neighbor decoding scheme. We introduce a class of matrices, called
Hadamard matrices, which enable one to construct codes (non linear codes
unfortunately) such that d(C) is very large compared. These codes were
used for communication with the Mariner space probes during the 1960s
and 70s.

For the reader who wishes to pursue coding theory more deeply, there
are several elementary texts, such as Introduction to Coding Theory by R.
Hill and Introduction to the Theory of Error-Correcting Codes by V. Pless.
The more advanced book, Applied Abstract Algebra by R. Lidl and G. Pilz,
gives many interesting applications of linear algebra besides coding theory.
The web is also an excellent source of information.



Chapter 7

Linear Transformations

The purpose of this Chapter is to introduce linear transformations, a way
of moving from one vector space to another. In particular, the linear trans-
formations between two vector spaces V and W (over the same field) them-
selves form a vector space L(V,W ). If V and W are finite dimensional
vector spaces, then a linear transformation is given by a matrix, so the
theory of linear transformations is part of matrix theory. We will also study
the geometric properties of linear transformations.

7.1 Definitions and Examples

7.1.1 Mappings

Recall that a mapping form a set X called the domain to a set Y called
the target is a rule which assigns to each element of X a unique element
F (x) ∈ Y . Such a mapping is denoted as F : X → Y . The range of F is
the set F (X) = {y ∈ Y | y = F (x) ∃ x ∈ X}.

When the domain and target of a mapping F are vector spaces, the
mapping is often called a transformation. A transformation F : Fn → Fm is
completely determined by expressing F (x) in terms of components:

F (x) =

 f1(x)
...

fm(x)

 =
m∑
i=1

fi(x)ei, (7.1)

where e1, . . . , em is the standard basis of Fm. The functions f1, . . . , fm are
called the components of F with respect to the standard basis. If W is a

183
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finite dimensional vector space , we can define the components f1, . . . , fm of
F with respect to a given basis w1, . . . ,wm of W by writing

F (v) =
m∑
i=1

fi(v)wi.

The component functions are uniquely determined by F and this choice of
basis.

7.1.2 The Definition of a Linear Transformation

From the linear algebraic viewpoint, the most important transformations
are those which preserve linear combinations. These are either called linear
transformations or linear mappings.

Definition 7.1. Suppose V and W are vector spaces over a field F. Then
a transformation T : V →W is said to be linear if

(1) T (x + y) = T (x) + T (y) for all x, y ∈ V , and

(2) T (rx) = rT (x) for all r ∈ F and all x ∈ V .

Clearly, a linear transformation T preserves linear combinations:

T (rx + sy) = rT (x) + sT (y),

for all r, s ∈ F and all x,y ∈ V .
Conversely, any transformation that preserves linear combinations is a

linear transformation. Another obvious property is that any linear trans-
formation maps 0 to 0: T (0) = 0. This follows, for example, from the fact
that

T (x) = T (x + 0) = T (x) + T (0)

for any x ∈ V , which can only happen if T (0) = 0.

7.1.3 Some Examples

Example 7.1 (The identity transformation). The transformation

Id : V → V

defined by Id(x) = x is called the identity transformation. This transfor-
mation is clearly linear.
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Example 7.2. If a ∈ Rn, the dot product with a defines a linear trans-
formation Ta : Rn → R by Ta(x) = a · x. It turns out that any linear
transformation T : Rn → R has the form Ta for some a ∈ Rn.

Example 7.3. Consider the linear mapping T : R2 → R2 given by

T

(
x
y

)
=
(
λx
µy

)
,

where λ and µ are scalars. Since T (e1) = λe1 and T (e2) = µe2, it follows
that if both λ and µ are nonzero, then T maps a rectangle with sides parallel
to e1 and e2 onto another such rectangle whose sides have been dilated by
λ and µ and whose area has been changed by the factor |λµ|. If |λ| 6= |µ|,
then T maps circles to ellipses. For example, let C denote the unit circle
x2 + y2 = 1, and put w = λx and z = µy. Then the image of T is the ellipse

(
w

λ
)2 + (

z

µ
)2 = 1.

In general, a linear transformation T : V → V is called semi-simple if
there exists a basis v1, . . . ,vn of V such that T (vi) = λivi for each index
i, for where each λi ∈ F. It turns out that one of the main problems
in the theory of linear transformations is how to determine when a linear
transformation is semi-simple. A nonzero vector v such that T (v) = λv is
called an eigenvector of T and λ is called the corresponding eigenvalue. The
pair (λ,v) is called an eigenpair for T . Eigenvalues and eigenvectors are the
basis of the subject of eigentheory, which will be taken up in Chapter 9.

Example 7.4. The cross product gives a pretty example of a linear trans-
formation on R3. Let a ∈ R3 and define Ca : R3 → R3 by

Ca(v) = a× v.

Notice that Ca(a) = 0, and that Ca(x) is orthogonal to a for any x. The
transformation Ca is used in mechanics to express angular momentum.

Example 7.5. Suppose V = C[a, b], the space of continuous real valued
functions on the closed interval [a, b]. The definite integral over [a, b] defines
a linear transformation ∫ b

a
: V → R

by the rule f 7→
∫ b
a f(t)dt. The assertion that

∫ b
a is a linear transformation

is just the fact that for all r, s ∈ R and f, g ∈ V ,∫ b

a
(rf + sg)(t)dt = r

∫ b

a
f(t)dt+ s

∫ b

a
g(t)dt.
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This example is the analogue for C[a, b] of the linear transformation Ta

on Rn defined in Example 7.2 above, where a is taken to be the constant
function 1. For, by definition,∫ b

a
f(t)dt = (f, 1).

Example 7.6. Let V be a vector space over F, and let W be a subspace
of V . Let V/W be the quotient of V by W introduced in Chapter 5. Let
π : V → V/W be the quotient map defined by

π(v) = v +W.

Then π is a linear map. We leave the details of this as an exercise.

7.1.4 General Properties of Linear Transformations

Suppose V is a finite dimensional vector space over F, and W is another (not
necessarily finite dimensional) vector space over F. What we will now prove
is that given a basis of V , there exists a unique linear transformation T : V →
W taking whatever values we wish on the given basis of V , and, furthermore,
its values on the basis of V uniquely determine the linear transformation.
This is a property of linear transformations which we will use throughout
this Chapter.

Proposition 7.1. Let V and W be vector spaces over F. Then every linear
transformation T : V → W is uniquely determined by its values on a basis
of V . Moreover, if v1, . . . ,vn is a basis of V and w1, . . . ,wn are arbitrary
vectors in W , then there exists a unique linear transformation T : V → W
such that T (vi) = wi for each i. In other words, there is a unique linear
transformation with any given values on a basis.

Proof. The proof is surprisingly simple. Suppose v1, . . . ,vn is a basis of V
and T : V →W is linear. Since every v ∈ V has a unique expression

v =
n∑
i=1

rivi,

where r1, . . . rn ∈ F, then

T (v) =
n∑
i=1

riT (vi).
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Thus T is uniquely determined by its values on v1, . . . ,vn.
Now suppose w1, . . . ,wn are arbitrary vectors in W . We want to show

there exists a unique linear transformation T : V →W such that T (vi) = wi

for each i. If v =
∑n

i=1 rivi, put

T (v) =
n∑
i=1

riT (vi).

This certainly defines a unique transformation, so all we have to do is show
that T is linear. Let v =

∑
αivi and w =

∑
βivi. Then

v + w =
∑

(αi + βi)vi,

so, by definition,

T (v + w) =
∑

(αi + βi)T (vi) =
∑

αiT (vi) +
∑

βiT (vi).

Hence T (v + w) = T (v) + T (w). Similarly, T (rv) = rT (v). Hence T is
linear, so the proof is finished.

Transformations F : V →W can be added using pointwise addition, and
they can be multiplied by scalars in a similar way. That is, if F,G : V →W
are any two transformations, we form their sum F +G by setting

(F +G)(v) = F (v) +G(v).

Scalar multiplication is defined by putting

(aF )(v) = aF (v)

for any scalar a. Thus, we can take arbitrary linear combinations of trans-
formations.
Proposition 7.2. Let V and W be vector spaces over F. Then any linear
combination of linear transformations with domain V and target W is also
linear. Thus the set L(V,W ) of all linear transformations T : V → W is a
vector space over F.

The dimension of L(V,W ) can easily be deduced from Proposition 7.1.
Proposition 7.3. Suppose dimV = n and dimW = m. Then L(V,W ) has
dimension mn.

Proof. We will define a basis of L(V,W ), and leave the proof that it is a
basis as an exercise. Choose any bases v1, . . . ,vn of V and y1, . . . ,ym of W .
By Proposition 7.1, if 1 ≤ i ≤ n and 1 ≤ j ≤ m, there exists a unique linear
transformation Tij : V → W defined by the condition that Tij(vj) = wi. I
claim that the mn linear transformations Tij are a basis of L(V,W ).
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Exercises

Exercise 7.1. Show that every linear function T : R → R has the form
T (x) = ax for some a ∈ R.

Exercise 7.2. Determine whether the following are linear or not:
(i) f(x1, x2) = x2 − x2.

(ii) g(x1, x2) = x1 − x2.

(iii) f(x) = ex.

Exercise 7.3. Suppose T : Fn → Fm is an arbitrary transformation and
write

T (v) =


f1(v)
f2(v)

...
fm(v)

 .

Show that T is linear if and only if each component fi is a linear function.
In particular, T is linear if and only if there exist a1,a2, . . . ,am in Fn such
that for fi(v) = ai · v for all v ∈ Fn.

Exercise 7.4. Suppose T : V → V is linear. Show that if T (v) = 0 for
some v 6= 0, then 0 is an eigenvalue and (v, 0) is an eigenpair for T .

Exercise 7.5. Suppose S, T : V →W are two linear transformations. Show
that if v1, . . . ,vn is a basis of V and S(vi) = T (vi) for all i = 1, . . . , n, then
S = T . That is, S(v) = T (v) for all v ∈ V .

Exercise 7.6. Show that the cross product linear transformation Ca : R3 →
R3 defined in Example 7.4 has 0 as an eigenvalue. Is this the only eigenvalue?

Exercise 7.7. What are the eigenvalues of the identity transformation?

Exercise 7.8. Let V be a vector space over F, and let W be a subspace of
V . Let π : V → V/W be the quotient map defined by π(v) = v +W. Show
that π is linear.

Exercise 7.9. Let T : R2 → R2 be a linear map with matrix
(
a b
c d

)
.

The purpose of this exercise is to determine when T is linear over C. That
is, since, by definition, C = R2 (with complex multiplication), we may ask
when T (αβ) = αT (β) for all α, β ∈ C. Show that a necessary and sufficient
condition is that a = d and b = −c.
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Exercise 7.10. Finish the proof of Proposition 7.3 by showing the Tij are
indeed a basis of L(V,W ).

Exercise 7.11. Let X and Y be sets and φ : X → Y a mapping. Recall
from Definition 4.5 that φ is injective if and only if for x ∈ X, φ(x) = φ(x′)
implies x = x′, and φ is surjective if and only if φ(X) = Y . Show the
following:

(i) φ is injective if and only if there exists a mapping ψ : F (X) → X
such that ψ ◦ φ is the identity mapping id : X → X defined by id(x) = x
for all x ∈ X.

(ii) φ is surjective if and only if there exists a mapping ψ : Y → X such
that φ ◦ ψ is the identity mapping id : Y → Y

(iii) Conclude that φ is a bijection if and only if there exists a mapping
ψ : Y → X such that φ ◦ ψ is the identity mapping id : Y → Y and ψ ◦ φ is
the identity mapping id : X → X.

Exercise 7.12. Suppose that T : V →W is a linear transformation. Show
that T is injective if and only if T (x) = 0 only if x = 0.

Exercise 7.13. Let F be a finite field of characteristic p. Let T : F → F be
the transformation defined by T (x) = xp. Recall that the set of multiples of
m1 in F, where m− 0, 1, . . . , p− 1 form a subfield F′ = Fp of F and that F
is a vector space over this subfield. Show that T is a linear transformation
of F with respect to this vector space structure. The transformation T is
called the Frobenius map.
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7.2 Linear Transformations on Fn and Matrices

The purpose of this section is to make the connection between matrix theory
and linear transformations on Fn. In fact that they are everym×nmatrix on
F determines a linear transformation and conversely. This gives a powerful
method for studying linear transformations. Moreover, looking at a matrix
as a linear transformation gives us a natural explanation for the definition
of matrix multiplication. It turns out that matrix multiplication is just the
operation of composing two linear transformations.

7.2.1 Matrix Linear Transformations

Our first observation is

Proposition 7.4. Suppose A ∈ Fm×n. Then A defines a linear transforma-
tion TA : Fn → Fm by the rule TA(x) = Ax. If we express A in terms of its
columns as A = (a1 a2 · · · an), then

TA(x) = Ax =
n∑
i=1

xiai.

Hence the value of TA at x is a linear combination of the columns of A.

Proof. The fact that TA is linear follows immediately from the distributive
and scalar multiplication laws for matrix multiplication.

The converse of the above Proposition is also true. All linear transfor-
mations from Fn to Fm come from matrices; that is, they are all matrix
linear transformations.

Proposition 7.5. Every linear transformation T : Fn → Fm is of the form
TA for a unique m× n matrix A. The ith column of A is T (ei), where ei is
the ith standard basis vector, i.e. the ith column of In.

Proof. Let ai = T (ei) for all indices i. The point is that any x ∈ Fn has the
unique expansion

x =
n∑
i=1

xiei,

so,

T (x) = T
( n∑
i=1

xiei
)

=
n∑
i=1

xiT (ei) =
n∑
i=1

xiai.



191

Thus,
T (x) = Ax,

where A = (a1 · · · an). To see that A is unique, suppose A and B are
in Fm×n and A 6= B. Then Aei 6= Bei for some i, so TA(ei) 6= TB(ei).
Hence different matrices define different linear transformations, so the proof
is complete.

Example 7.7. For example, the matrix of the identity transformation Id :
Fn → Fn is the identity matrix In. That is Id = TIn .

A linear transformation T : Fn → F is called a linear function . If a ∈ F,
then the function Ta(x) := ax is a linear function T : F → F. More generally,
we have
Proposition 7.6. Every linear function T : Fn → F has the form T (x) =
aTx for some a ∈ Fn. That is, there exist a1, a2, . . . , an ∈ F such that

T


x1

x2
...
xn

 =
n∑
i=1

aixi.

Proof. Just set ai = T (ei).

Example 7.8. Let a = (1, 2, 0, 1)T . The associated linear function T : F4 →
F has the explicit form

T


x1

x2

x3

x4

 = x1 + 2x2 + x4.

Finally we connect linear functions and linear transformations.
Proposition 7.7. A transformation T : Fn → Fm

T (x) =

 f1(x)
...

fm(x)

 =
m∑
i=1

fi(x)ei,

is linear if and only if each of the component functions f1, . . . , fm is a linear
function.

Proof. This is left to the reader.
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7.2.2 Composition and Multiplication

So far, matrix multiplication has just been a convenient tool without a
natural interpretation. We’ll now provide one. For this, we need to consider
the composition of two transformations. Suppose S : Fp → Fn and T : Fn →
Fm are any two transformations. Since the target of S is the domain of T ,
the operation of composition can be defined. The composition of S and T
is the transformation T ◦ S : Fp → Fm defined by

T ◦ S(x) = T
(
S(x)

)
.

The following Proposition describes the composition if S and T are linear.

Proposition 7.8. Suppose S : Fp → Fn and T : Fn → Fm are linear
transformations with matrices A and B respectively. That is, S = TA and
T = TB. Then the composition T ◦ S : Fp → Fm is also linear, and the
matrix of T ◦ S is BA. In other words,

T ◦ S = TB ◦ TA = TBA.

Letting M(S) ∈ Fn×p and M(T ) ∈ Fm×n denote the matrix of T , we there-
fore have

M(T ◦ S) = M(T )M(S)

in Fm×p.

Proof. To prove T ◦ S is linear, note that

T ◦ S(rx + sy) = T
(
S(rx + sy)

)
= T

(
rS(x) + sS(y)

)
= rT

(
S(x)

)
+ sT

(
S(y)

)
.

Thus, T ◦ S(rx + sy) = rT ◦ S(x) + sT ◦ S(y), so T ◦ S is linear as claimed.
To find the matrix of T ◦ S, we observe that

T ◦ S(x) = T (Ax) = B(Ax) = (BA)x,

by the associativity of multiplication. This implies that the matrix of T ◦ S
is the product BA, as asserted. The rest of the proof now follows easily.

Note that the associativity of matrix multiplication is a key fact. In fact,
we could have used that T ◦ S(x) = (BA)x to conclude that T ◦ S is linear,
so the first part of the proof was actually unnecessary.
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7.2.3 An Example: Rotations of R2

A nice way of illustrating the connection between matrix multiplication and
composition is with rotations of the plane. Let Rθ : R2 → R2 stand for the
counter-clockwise rotation of R2 through θ. Computing the images of R(e1)
and R(e2), we have

Rθ(e1) = cos θe1 + sin θe2,

and
Rθ(e2) = − sin θe1 + cos θe2.

I claim that rotations are linear. This can be seen as follows. Suppose x
and y are any two non-collinear vectors in R2, and let P be the parallelogram
they span. Then Rθ rotates the whole parallelogram P about the origin 0
to a new parallelogram Rθ(P ). The edges of Rθ(P ) at 0 are Rθ(x) and
Rθ(y). The diagonal x + y of P is rotated to the diagonal of Rθ(P ), which
is Rθ(x) +Rθ(y). Thus

Rθ(x + y) = Rθ(x) +Rθ(y).

Similarly, for any scalar r,

Rθ(rx) = rRθ(x).

Therefore Rθ is linear, as claimed. Let Rθ denote the matrix of Rθ. Then
Rθ = (Rθ(e1) Rθ(e2)), so

Rθ =
(

cos θ − sin θ
sin θ cos θ

)
. (7.2)

Thus

Rθ

(
x
y

)
=
(
x cos θ − y sin θ
x sin θ + y cos θ

)
.

Notice that the matrix (7.2) of a rotation is an orthogonal matrix (see Section
3.3.3).

Consider the composition of two rotations. The rotation Rψ followed
that by Rθ is clearly the rotation Rθ+ψ. That is,

Rθ+ψ = Rθ ◦ Rψ.

Therefore, by Proposition 7.8, we see that Rθ+ψ = RθRψ. Hence(
cos(θ + ψ) − sin(θ + ψ)
sin(θ + ψ) cos(θ + ψ)

)
=
(

cos θ − sin θ
sin θ cos θ

)(
cosψ − sinψ
sinψ cosψ

)
.
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Expanding the product gives the angle sum formulas for cos(θ + ψ) and
sin(θ + ψ). Namely,

cos(θ + ψ) = cos θ cosψ − sin θ sinψ,

and
sin(θ + ψ) = sin θ cosψ + cos θ sinψ.

This is probably the simplest proof of these basic formulas.
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Exercises

Exercise 7.14. Find the matrix of the following transformations:

(i) F (x1, x2, x3)T = (2x1 − 3x3, x1 + x2 − x3, x1, x2 − x3)T .

(ii) G(x1, x2, x3, x4)T = (x1 − x2 + x3 + x4, x2 + 2x3 − 3x4)T .

(iii) The matrix of G ◦ F .

Exercise 7.15. Find the matrix of

(i) The rotation R−π/4 of R2 through −π/4.

(ii) The reflection H of R2 through the line x = y.

(iii) The matrices of H ◦R−π/4 and R−π/4 ◦H, where H is the reflection of
part (ii).

(iv) The rotation of R3 through π/3 about the z-axis.

Exercise 7.16. Show that every rotation Rθ also defines a C-linear map
Rθ : C → C. Describe this map in terms of the complex exponential.

Exercise 7.17. Let V = C, and consider the transformation R : V → V
defined by R(z) = αz, where α is a fixed constant in C. Write out what R
is as a linear transformation R : R2 → R2.

Exercise 7.18. Find the matrix of the cross product transformation Ca :
R3 → R3 with respect to the standard basis in the following cases:

(i) a = e1, and

(ii) a = e1 + e2 + e3.

Exercise 7.19. Prove Proposition 7.7.

Exercise 7.20. Suppose T : Fn → Fn is linear. Give a necessary and
sufficient condition for the inverse transformation T−1 exist?
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7.3 Geometry of Linear Transformations on Rn

As illustrated by the example of rotations, linear transformations T : Rn →
Rn have rich geometric properties. In this section we will illustrate some of
these geometric aspects.

7.3.1 Transformations of the Plane

We know that a linear transformation T : R2 → R2 is determined by T (e1)
and T (e2), and so if T (e1) and T (e2) are non-collinear, then T sends each one
of the coordinate axes Rei to the line RT (ei). Furthermore, T transforms
the square S spanned by e1 and e2 onto the parallelogram P with edges
T (e1) and T (e2). Indeed,

P = {rT (e1) + sT (e2) | 0 ≤ r, s ≤ 1},

and since T (re1 + se2) = rT (e1) + sT (e2), T (S) = P. More generally, T
sends the parallelogram with sides x and y to the parallelogram with sides
T (x) and T (y).

We now consider a case where T (e1) and T (e2) are collinear.

Example 7.9 (Projections). The purpose of this Example is to introduce
projections.The general theory of projections is developed in Chapter 10, so
we won’t include all the proofs. Let a ∈ R2 be non-zero. The transformation

Pa(x) =
(a · x
a · a

)
a

is called the projection on the line Ra spanned by a. Clearly the projection
Pa is linear. One checks easily that

x = Pa(x) + (x− Pa(x)) (7.3)

is the orthogonal decomposition of of x into the sum of a component parallel
to a and a component orthogonal to a.

By the formula for Pa, we get the explicit expression

Pa

(
x1

x2

)
=

(
a1x1 + a2x2

a2
1 + a2

2

)a1

(
a1x1 + a2x2

a2
1 + a2

2

)a2

 ,

where a = (a1, a2)T and x = (x1, x2)T . Thus the matrix of Pa is

1
a2

1 + a2
2

(
a2

1 a1a2

a1a2 a2
2

)
.
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Of course, projections don’t send parallelograms to parallelograms, since
any two values Pa(x) and Pa(y) are collinear.

Notice that each vector on the line spanned by a is preserved by Pa,
and every vector orthogonal to a is mapped by Pa to 0. It follows that a
is an eigenvector with eigenvalue one and any vector orthogonal to a is an
eigenvector with eigenvalue zero.

7.3.2 Orthogonal Transformations

A transformation T : Rn → Rn is said to be an orthogonal transformation if
and only if

T (x) · T (y) = x · y (7.4)

for all x and y in Rn. By elementary properties of the dot product, it
follows that orthogonal transformations are characterized by the fact that
they preserve angles and lengths. Hence this type of transformation is closely
related with Euclidean geometry. Let us show
Proposition 7.9. Every orthogonal transformation T : Rn → Rn is lin-
ear. Moreover, the matrix of an orthogonal transformation is an orthogonal
matrix. Conversely, an orthogonal matrix defines an orthogonal transfor-
mation.

Proof. To show that an orthogonal transformation T is linear, we must show
T (x+y) = T (x)+T (y) and T (rx) = rT (x). These conditions are equivalent
to showing |T (x+y)−T (x)−T (y)|2 = 0 and |T (rx)−rT (x)|2 = 0. For this
just recall that |x|2 = x · x and use the use the definition of an orthogonal
transformation. The calculations are straightforward, but somewhat long,
so we will leave them as an exercise.

For the converse, recall that Q ∈ Rn×n is orthogonal if and only if
QTQ = In. To show T (x) = Qx is orthogonal, note that

T (x) · T (y) =
(
Qx
)T
Qx = xTQTQx = xTx,

so indeed the claim is correct.

In other words, orthogonal transformations are just orthogonal matrices.
For example, rotations of R2, studied in the last Section, are examples of
orthogonal transformations, and we will now consider another type.

Let’s next consider reflections. In everyday terms, one’s reflection is the
image one sees in a mirror. The mirror can be thought of as a plane through
which R3 is being reflected. To analyze how a reflection happens, let’s first
analyze how a reflection works in R2. Suppose ` is a line in R2, which we’ll
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assume passes through the origin. Then the reflection of R2 through ` acts
as follows. Every point on ` is fixed, and every point on the line `⊥ through
the origin orthogonal to ` is sent to its negative.

To analyze what happens further, let b be any non-zero vector on `⊥,
and let Hb : R2 → R2 denote the reflection through `. Choose an arbitrary
v ∈ R2, and consider its orthogonal decomposition

v = Pb(v) + c

with c on `. By the definition of the reflection,

Hb(v) = −Pb(v) + c.

Replacing c by v − Pb(v) gives the formula

Hb(v) = v − 2Pb(v)

= v − 2
(v · b
b · b

)
b.

Expressing this in terms of the unit vector b̂ determined by b gives us the
simpler expression

Hb(v) = v − 2(v · b̂)b̂. (7.5)

Lets just check Hb has the properties we sought. First, Hb(v) = v if
b · v = 0. Second, Hb(b) = −b. Notice that Hb = I2 − 2Pb, so a reflection
is a linear transformation.

The above expression of a reflection extends from R2 to R3 and even to
Rn for any n ≥ 3 as follows. Let b be any nonzero vector in Rn, and let W
be the hyperplane in Rn consisting of all the vectors orthogonal to b. Then
the transformation Hb : Rn → Rn defined by (7.5) is the reflection of Rn

through W .

Example 7.10. Let b = (1, 1)T , so b̂ = ( 1√
2
, 1√

2
)T . Then Hb is the reflec-

tion through the line x = −y. We have

Hb

(
a
b

)
=

(
a
b

)
− 2(

(
a
b

)
·

(
1√
2

1√
2

)
)

(
1√
2

1√
2

)

=
(
a− (a+ b)
b− (a+ b)

)
=

(
−b
−a

)
.
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There are several worthwhile consequences of formula (7.5). As noted,
any reflection through a hyperplane is linear, and the composition of a re-
flection with itself is the identity (since reflecting any v twice returns v
to itself). That is, Hb ◦ Hb = I2. Furthermore, reflections preserve inner
products,

Hb(v) ·Hb(w) = v ·w,

so indeed they are also orthogonal. We will leave these the proofs of these
properties as an exercise.

We noted above that every rotation of R2 is orthogonal (for example,
a rotation matrix is orthogonal). The next Proposition gives a somewhat
surprising description of the orthogonal transformations of R2.
Proposition 7.10. Every orthogonal transformation of R2 is either a re-
flection or a rotation. In fact, the reflections are those orthogonal transfor-
mations T given by a symmetric orthogonal matrix different from I2. The
rotations Rθ are those orthogonal transformations whose matrix Rθ is either
I2 or not symmetric.

Proof. It is not hard to check that any 2×2 orthogonal matrix has the form

Rθ =
(

cos θ − sin θ
sin θ cos θ

)
or

Hθ =
(

cos θ sin θ
sin θ − cos θ

)
.

The former are rotations (including I2) and the latter are symmetric, but
do not include I2. The transformations Hθ are in fact reflections. In fact,
Hθ is the reflection through the line spanned by (cos(θ/2), sin(θ/2))T .

Recall that the set of 2 × 2 orthogonal matrices is the matrix group
denoted aby O(2,R). The product of two orthogonal matrices is therefore
orthogonal. It is an interesting exercise to identify what sort of transforma-
tion is obtained by multiplying two reflections and multiplying a reflection
and a rotation (see Exercise 7.33).

The structure of orthogonal transformations in higher dimensions is quite
a bit more complicated, even in the 3×3 case. That is, the rotations and re-
flections of R3 do not give all the possible orthogonal linear transformations
of R3.
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Exercises

Exercise 7.21. Let a ∈ Rn.

(i) Show that the projection

Pa(x) =
(a · x
a · a

)
a

is linear.

(ii) Verify from the formula that the projection Pa fixes every vector on the
line spanned by a and sends every vector orthogonal to a to 0.

(iii) Verify that every projection matrix P satisfies P 2 = P .

Exercise 7.22. Let Hb : R2 → R2 be the reflection of R2 through the line
orthogonal to b.

(i) Find formulas for Hb((1, 0)) and Hb((0, 1)).

(ii) Find an explicit formula for the matrix A of Hb.

(iii) Show also that Hb(Hb(x)) = x.

(iv) Conclude from part (iii) that A2 = I2. Also, check this with your
explicit formula for A.

Exercise 7.23. Let V = C and consider the transformation H : V → V
defined by H(z) = z. Interpret H as a transformation from R2 to R2. Is H
orthogonal?

Exercise 7.24. Consider the transformation Ca : R3 → R3 defined by

Ca(v) = a× v,

where a× v is the cross product of a and v.

(i) Show that Ca is linear.

(ii) Describe the set of vectors x such that Ca(x) = 0.

(iii) Give a formula for |Ca(v)| in terms of |a| and |v|.

Exercise 7.25. Let u and v be two orthogonal unit length vectors in R2.
Show that the following formulas hold for all x ∈ R2:

(i) Pu(x) + Pv(x) = x, and

(ii) Pu(Pv(x)) = Pv(Pu(x)) = 0.

(iii) Conclude from (a) that x = (x · u)u + (x · v)v.
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Exercise 7.26. Complete the proof of Proposition 7.9 .

Exercise 7.27. Suppose T : R2 → R2 is a linear transformation which
sends any two non collinear vectors to non collinear vectors. Suppose x and
y in R2 are non collinear. Show that T sends any parallelogram with sides
parallel to x and y to another parallelogram with sides parallel to T (x) and
T (y).

Exercise 7.28. Show that all reflections are orthogonal linear transforma-
tions. In other words, show that for all x and y in Rn,

Hb(x) ·Hb(y) = x · y.

Exercise 7.29. Show explicitly that every orthogonal linear transformation
preserves lengths of vectors, and angles and distances between two distinct
vectors.

Exercise 7.30. A linear transformation T : Rn → Rn which preserves
angles is called conformal. Describe the set of conformal mappings T :
R2 → R2.

Exercise 7.31. Find the reflection of R3 through the plane P if:

(i) P is the plane x+ y + z = 0; and

(ii) P is the plane ax+ by + cz = 0.

Exercise 7.32. Which of the following statements are true? Explain.

(i) The composition of two rotations is a rotation.

(ii) The composition of two reflections is a reflection.

(iii) The composition of a reflection and a rotation is a rotation.

(iv) The composition of two reflections is a rotation.

Exercise 7.33. Let Hλ, Hµ and Rν be 2× 2 reflection, reflection and rota-
tion matrices as defined in the proof of Proposition 7.10. Find and describe:

(i) HλHµ;

(ii) HλRν ; and

(iii) RνHλ.
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7.4 The Matrix of a Linear Transformation

Now suppose V and W are finite dimensional vector spaces over F, and
suppose T : V →W is a linear transformation. The purpose of this section
is to give a define the matrix of T with respect to arbitrary bases of the
domain V and the target W .

7.4.1 The Matrix MB
B′(T )

As above, let V and W be finite dimensional vector spaces over F, and
suppose T : V →W is linear. Fix a basis

B = {v1,v2, . . . ,vn}

of V and a basis
B′ = {w1,w2, . . . ,wm}

of W . We will now define the matrix MB
B′(T ) of T with respect to these

bases. Since B′ is a basis of W , each T (vj) can be uniquely written

T (vj) =
m∑
i=1

cijwi. (7.6)

Definition 7.2. The matrix of T with respect to the bases B and B′ is
defined to be the m× n matrix MB

B′(T ) = (cij).

What this definition says is that the jth column of the matrix MB
B′(T )

is the column vector consisting of the coefficients of T (vj) with respect to
the basis B′. One can express (7.6) in matrix form by

(T (v1) T (v2) · · ·T (vn)) = (w1 w2 · · ·wm)MB
B′(T ). (7.7)

It’s important to note that if V = Fn, W = Fm and T = TA, where A ∈
Fm×n, then MB

B′(T ) = A if B and B′ are the standard bases. For TA(ej) is
the always jth column of A. We remark that (7.4.3) implies

MB
B′(Id) = MB′

B , (7.8)

where Id : V → V is the identity.

Example 7.11. Let V be the space of real polynomials of degree at most
three, and let W be the space of real polynomials of degree at most two.
Then differentiation is a linear transformation D : V →W . Now

D(ax3 + bx2 + cx+ d) = 3ax2 + 2bx+ c.
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Let B be the basis {1, x, x2, x3} of V and B′ the basis {1, x, x2} of W . Now,

D(1) = 0, D(x) = 1, D(x2) = 2x, D(x3) = 3x2.

Thus

MB
B′(D) =

0 1 0 0
0 0 2 0
0 0 0 3

 .

Now suppose that T : V → V is a diagonalizable (or semi-simple)
linear transformation. Recall that this means there exists a basis B =
{v1,v2, . . . ,vn} of V such that (vi) = λivi for each index i between 1
and n. Hence B is an eigenbasis of V for T . In this case, MB

B(T ) is the
diagonal matrix λ1 O

. . .
O λn

 .

But what is the matrix of T with respect to some other basis B′ of V ?
This is the question that will be answered next. The first step in answering
this question is to find out how to relate the expansions of a given vector in
V with respect to two different bases.

7.4.2 Coordinates With Respect to a Basis

Our next goal is to find how one passes from one set of coordinates to
another. Let B = {v1,v2, . . . ,vn} be a basis of V . Then every v ∈ V has a
unique expression

v = r1v1 + r2v2 + · · ·+ rnvn.

Definition 7.3. We will call r1, r2, . . . , rn the coordinates of v with respect
to B. We will sometimes write w =< r1, r2, . . . , rn >.

Of course, finding the coordinates of a vector in Fn with respect to a
basis is the familiar problem of solving a linear system. We now want to
consider how to go from one set of coordinates to another. It shouldn’t be
surprising that this also involves a linear system.

Suppose B′ = {v′1,v′2, . . . ,v′n} is another a basis of V . Then

v = s1v′1 + s2v′2 + · · ·+ snv′n.

How does one pass from the coordinates < r1, r2, . . . , rn > with respect to
B to the coordinates < s1, s2, . . . , sn > with respect to B′? The simplest



204

answer comes from using matrix notation as follows. Define

(
v1 v2 · · · vn

)

r1
r2
...
rn

 =
n∑
i=1

rivi. (7.9)

Then

(
v1 v2 · · · vn

)

r1
r2
...
rn

 =
n∑
i=1

rivi =
(
v′1 v′2 · · · v′n

)

s1
s2
...
sn

 .

Suppose we write(
v′1 v2 · · · v′n

)
=
(
v1 v2 · · · vn

)
A

for some n× n matrix A over F. Then we can argue that
r1
r2
...
rn

 = A


s1
s2
...
sn

 . (7.10)

Notice that if V = Fn, then
(
v′1 v′2 · · · v′n

)
∈ Fn×n, so we can write

A =
(
v1 v2 · · · vn

)−1 (v′1 v′2 · · · v′n
)
.

We will denote the change of basis matrix A by MB
B′ (see below).

Example 7.12. Suppose F = R, and consider two bases of R2, say

B = {
(

1
2

)
,

(
0
1

)
} and B′ = {

(
1
1

)
,

(
1
−1

)
}.

Suppose for example that v = e1. The two sets of coordinates are easily
found by inspection:

e1 =
(

1
0

)
= 1

(
1
2

)
− 2

(
0
1

)
,

and

e1 =
(

1
0

)
=

1
2

(
1
1

)
+

1
2

(
1
−1

)
.

Thus the coordinates of e1 with respect to B are < 1,−2 >, and with respect
to B′ they are < 1

2 ,
1
2 >.
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To see how the two different sets of coordinates are related, we set up
the following system, which expresses B′ in terms of B:(

1
1

)
= a11

(
1
2

)
+ a21

(
0
1

)
,

and (
1
−1

)
= a12

(
1
2

)
+ a22

(
0
1

)
.

These equations are expressed in matrix form as:(
1 1
1 −1

)
=
(

1 0
2 1

)(
a11 a12

a21 a22

)
.

The change of basis matrix MB
B′ which expresses how to go between the two

sets of coordinates is defined (see below) to be

MB
B′ =

(
a11 a12

a21 a22

)
.

Of course, here

MB
B′ =

(
1 0
2 1

)−1(1 1
1 −1

)
=
(

1 1
−1 −3

)
.

Now suppose the coordinates of p with respect to B are < r, s > and
those with respect to B′ are < x, y >. Then

p =
(

1 0
2 1

)(
r
s

)
=
(

1 1
1 −1

)(
x
y

)
.

Hence (
r
s

)
=
(

1 0
2 1

)−1(1 1
1 −1

)(
x
y

)
,

so (
r
s

)
= MB

B′

(
x
y

)
=
(

1 1
−1 −3

)(
x
y

)
. (7.11)

To summarize this example, we outline the general procedure for the
case n = 2. Suppose B = {v1,v2} and B′ = {v′1,v′2}. Let

w = xv′1 + yv′2 = rv1 + sv2.
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Now there exist unique scalars aij ∈ F such that

v′1 = a11v1 + a21v2

v′2 = a12v1 + a22v2.

Putting this into matrix form gives

(v′1 v′2) = (v1 v2)
(
a11 a12

a21 a22

)
= (v1 v2)MB

B′ .

By substitution, we see that

w = (v′1 v′2)
(
x
y

)
= (v1 v2)MB

B′

(
x
y

)
= (v1 v2)

(
r
s

)
.

Since v1 and v2 are independent, we get the final result:(
r
s

)
= MB

B′

(
x
y

)
. (7.12)

Now consider the general case. Let

B = {v1,v2, . . . ,vn},

and
B′ = {v′1,v′2, . . . ,v′n}

be two bases of V . Define the change of basis matrix MB
B′ ∈ Fn×n to be the

matrix (aij) with entries determined by

v′j =
n∑
i=1

aijvi.

This expression uniquely determines MB
B′ , and gives the basic matrix iden-

tity
(v′1 v′2 · · · v′n) = (v1 v2 · · · vn)MB

B′ . (7.13)

Notice that if B is any basis of V , then

(v1 v2 · · · vn)A = (v1 v2 · · · vn)B ⇒ A = B. (7.14)

This is due to the fact that expressions in terms of bases are unique. Also,
note
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Proposition 7.11. Suppose B = {v1,v2, . . . ,vn} is a basis of V , and A ∈
Fn×n is invertible. Then putting

(w1 w2 . . .wn) = (v1 v2 . . .vn)A

defines a new basis of B′ = {w1,w2, . . . ,wn} of V with change of basis
matrix MB

B′ = A.

Proof. Since dimV = n, it suffices to show that w1, . . . ,wn are independent.
Suppose

∑
aiwi = 0. Then

0 = (w1 w2 . . .wn)

a1
...
an

 = (v1 v2 . . .vn)A

a1
...
an

 .

Putting a = (a1, . . . , an)T , it follows from the independence of B that Aa =
0. Since A is invertible, this implies a = 0, giving the result.

Now let us explore some of the properties of change of basis matrices.

Proposition 7.12. Let B and B′ be bases of V . Then

MB′
B = (MB

B′)
−1.

Proof. We have

(v1 . . .vn) = (v′1 . . .v′n)MB′
B = (v1 . . .vn)MB

B′MB′
B .

Thus, since B is a basis,
MB

B′MB′
B = In.

This shows (MB
B′)

−1 = MB′
B .

What happens if a third basis B′′ = {v′′1 , . . . ,v′′n} is thrown in? If we
iterate the expression in (7.16), we get

(v′′1 . . .v′′n) = (v′1 . . .v′n)MB′
B′′ = (v1 . . .vn)MB

B′MB′
B′′ .

Thus we get the final result on change of bases, namely

MB
B′′ = MB

B′MB′
B′′ . (7.15)
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7.4.3 Changing Basis for the Matrix of a Linear Transforma-
tion

The purpose of this section is to derive the change of basis forrmula for a
linear transformation T : V → V . Suppose

B = {v1,v2, . . . ,vn}

and
B′ = {v′1,v′2, . . . ,v′n}

are bases of V . We want to derive the formula for MB′
B′(T ) in terms of

MB
B(T ). Recall that

(T (v1) T (v2) · · ·T (vn)) = (v1 v2 · · ·vn)MB
B(T ).

Thus, by (7.14), MB
B(T ) is well defined.

We will now prove
Proposition 7.13. Let T : V → V be linear and let B and B′ be bases of
V . Then

MB′
B′(T ) = MB′

B MB
B(T )MB

B′ . (7.16)

Thus, if P = MB′
B , we have

MB′
B′(T ) = PMB

B(T )P−1. (7.17)

Proof. For simplicity, let us assume n = 2. Hence, (v′1 v′2) = (v1 v2)MB
B′ .

Since T is linear,

T (v′1 v′2) = T
(
(v1 v2)MB

B′
)

=
(
T (v1) T (v2)

)
MB

B′ .

Thus, (
T (v′1

)
T (v′2)) = T (v′1 v′2)

=
(
T (v1) T (v2)

)
MB

B′

= (v1 v2)MB
B(T )MB

B′

= (v′1 v′2)MB′
B MB

B(T )MB
B′ .

This implies, by definition, that

(v′1 v′2)MB′
B′(T ) = (v′1 v′2)MB′

B MB
B(T )MB

B′ .

Hence, by (7.14),
MB′

B′(T ) = MB′
B MB

B(T )MB
B′ .
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Example 7.13. Consider the linear transformation T of R2 whose matrix
with respect to the standard basis is

A =
(

1 0
−4 3

)
.

Let’s find the matrix B of T with respect to the basis B′ of Example 7.12.
Calling the standard basis B, formula (7.16) says

B =
(

1 1
1 −1

)−1( 1 0
−4 3

)(
1 1
1 −1

)
.

Computing the product gives

B =
(

0 −3
1 4

)
.

The following example demonstrates a key application of the change of
basis.

Example 7.14. Suppose A ∈ Fn×n has an eigenbasis v1, . . . ,vn, which we
will call B′, and say Avi = λivi for all i. Let P = (v1 · · ·vn), so P = MB

B′ ,
where B is the standard basis. Then AP = (λ1v1 · · ·λnvn) = PD, where
D = diag(λ1, . . . , λn). Note that D = MB′

B′(T ), where T = TA, so this
identity corresponds to (7.16), which says D = P−1AP , since A = MB

B(TA).
Note that this is equivalent to A = PDP−1, which is immediate from AP =
PD.

Definition 7.4. Let A and B be n × n matrices over F. Then we say A
is similar to B if and only if there exists an invertible P ∈ Fn×n such that
B = PAP−1. We say that A is diagonalizable if and only if A is similar to
a diagonal matrix.

Proposition 7.14. If A ∈ Fn×n is similar to a diagonal matrix D, say
A = QDQ−1, then the columns of P = Q−1 are a basis of eigenvectors of A
and the diagonal entries of D are the corresponding eigenvalues.

Proof. Just argue as in the previous example.

Note that two matrices representing the same linear transformation are
similar, by equation (7.16). Conversely, if two matrices are similar, then
they represent the same linear transformation with respect to suitable bases.
Moreover, any linear transformation which is represented by a diagonalizable
matrix is semi-simple and conversely.



210

It’s not hard to see that similarity is an equivalence relation on Fn×n
(Exercise: check this). The equivalence class of a matrix A is called the
conjugacy class of A. To summarize, we state
Proposition 7.15. Let V be a vector space over F such that dimV = n.
Then the set of matrices representing a fixed linear transformation T : V →
V form a conjugacy class in Fn×n. In addition, T is semi-simple if and only
if its conjugacy class contains a diagonalizable matrix.

Example 7.15. Let F = R and suppose v1 and v2 denote (1, 2)T and (0, 1)T

respectively. Let T : R2 → R2 be the linear transformation such that such
that T (v1) = v1 and T (v2) = 3v2. Note that Proposition 7.1 implies that
T exists and is unique. Now the matrix of T with respect to the basis v1,v2

is (
1 0
0 3

)
.

Thus T has a diagonal matrix in the v1,v2 basis. Let us find the matrix of T
with respect to the standard basis. Let B denote {e1, e2} and B′ = {v1,v2}.
Now

MB′
B =

(
1 0
2 1

)−1

=
(

1 0
−2 1

)
.

We have

MB′
B′(T ) =

(
1 0
0 3

)
= MB′

B MB
B(T )MB

B′ .

Thus

MB
B(T ) = MB

B′MB′
B′(T )MB′

B =
(

1 0
2 1

)(
1 0
0 3

)(
1 0
−2 1

)
.

Multiplying this out, we find

MB
B(T ) =

(
1 0
−4 3

)
.
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Exercises

Exercise 7.34. Find the coordinates of e1, e2, e3 of R3 in terms of the

basis

1
0
0

,

1
1
0

,

1
1
1

 of R3, and then find the matrix of the linear trans-

formation

T

x1

x2

x3

 =

4x1 + x2 − x3

x1 + 3x3

x2 + 2x3


with respect to this basis.

Exercise 7.35. Again, consider the basis

1
0
0

,

1
1
0

,

1
1
1

 of R3. Find

the matrix of the linear transformation T : R3 → R3 defined by T (x) =
(1, 1, 1)T × x with respect to this basis.

Exercise 7.36. Let Id : V → V be the identity transformation. Show that
for any two bases B and B′ of V , we have MB

B′(Id) = MB′
B .

Exercise 7.37. Let H : R2 → R2 be the reflection through the line x = y.
Find a basis of R2 such that the matrix of H is diagonal, and find the matrix
of H with respect to this basis.

Exercise 7.38. Show that any projection Pa : R2 → R2 is diagonal by
explicitly finding a basis for which the matrix of Pa is diagonal. Also, find
the diagonal matrix?

Exercise 7.39. Let Rθ be any rotation of R2. Does there exist a basis of
R2 for which the matrix of Rθ is diagonal?

Exercise 7.40. Let S and T be linear transformations from V to W , and
suppose B is a basis of V and B′ a basis of W . Show that

MB
B′(aS + bT ) = MB

B′(S) +MB
B′(T )

for any a, b ∈ F. In other words, assigning a matrix to a linear transforma-
tion is a linear transformation.

Exercise 7.41. Let Pn(R) denote the space of polynomials with real coef-
ficients of degree n or less, and let D : Pn(R) → Pn−1(R) be the derivative
map. That is, D(f) = f ′.

(i) Show that D is linear, and
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(ii) find the matrix of D for the bases of Pn(R) and Pn−1(R) of your
choice.

(iii) Find the matrix of D4 − 2D with respect to the same bases.

Exercise 7.42. Let A : Pn−1(R) → Pn(R) be the map

A(f) =
∫ x

0
f(t)dt.

Note that A stands for antiderivative.

(i) Show that A is linear and find the matrix of A with respect to the
bases of Pn−1(R) and Pn(R) you used in Exercise 7.41.

(ii) Find the matrix of AD and the matrix of DA, where D is the
derivative map.

Exercise 7.43. Let T : V → V be a linear transformation, and suppose B
and B′ are two bases of V . Express MB′

B (T ) in terms of MB
B′(T ), MB

B′ and
MB′

B .

Exercise 7.44. Let S : V → V and T : V → V be linear transformations,
and let B be a basis of V . Find MB

B(T ◦S) in terms of MB
B(S) and MB

B(T ).

Exercise 7.45. Let S : V →W and T : W → Y be linear transformations,
and let B, B′ and B′′ be bases of V , W and Y respectively. Is it true or false
that MB

B′′(TS) = MB′
B′′(T )MB

B′(S)?

Exercise 7.46. Let B be the basis

1
0
0

,

1
1
0

,

1
1
1

 of R3, and let T :

R3 → R3 be the linear transformation such that

MB
B(T ) =

 2 −3 3
−2 1 −7
5 −5 7

 .

(i) Find T

1
1
1

 .

(ii) Calculate the matrix of T with respect to the standard basis e1, e2, e3

of R3.

Exercise 7.47. Show that matrix similarity is an equivalence relation on
Fn×n.
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Exercise 7.48. Show that two similar matrices have the same eigenvalues
by showing how their eigenvectors related.

Exercise 7.49. Prove Proposition 7.15.
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7.5 Further Results on Linear Transformations

The purpose of this section is to develop some more of the basic facts about
linear transformations.

7.5.1 The Kernel and Image of a Linear Transformation

Let T : V →W be a linear transformation. Recall that the range of T as a
transformation is defined to be T (V ). In the case T is a linear transforma-
tion, we make the following definition.

Definition 7.5. The range of a linear transformation T is called the image
of T and is denoted by im(T ). The kernel of T , is defined to be the set

ker(T ) = {v ∈ V | T (v) = 0}.

Here are two basic examples, which are quite different in nature.

Example 7.16. Suppose V = Fn, W = Fm and T = TA, i.e. T (x) = Ax.
Then ker(T ) = N (A), so the problem of finding ker(T ) is simply to find
the solution space of an m × n homogeneous linear system. Furthermore,
im(T ) = col(A), since both im(T ) and col(A) consist of all linear combina-
tions of the columns of A. Hence ker(T ) and im(T ) are subspaces of V and
W . Moreover, dim im(T ) = rank(A) and dim ker(T ) = n− rank(A).

Example 7.17. Let P(R) denote the space of polynomials with real co-
efficients. The derivative D(f) of a polynomial is also a polynomial, and
D : P(R) → P(R) is a linear transformation. The kernel of D is the sub-
space R1 of constant polynomials, while im(D) = P(R).

Example 7.18. Now let C∞(R) denote the space of all real valued functions

f on R such that f (n) =
dnf

dxn
exists for all n > 0. A linear differential

operator of order n on C∞(R) is a transformation T : C∞(R) → C∞(R) of
the form

T (f) = f (n) + a1f
(n−1) + · · ·+ an−1f

′ + anf,

where a1, . . . , an ∈ C∞(R). In particular, if a1, . . . , an are just real constants,
then one says that T has constant coefficients. It is straightforward to check
that a linear differential operator is a linear transformation. A basic result
on differential equations says that if T is a linear differential operator of
order n with constant coefficients, then dim ker(T ) = n. The solution are of
the form erxf(x) where r is a (real or complex) root of

rn + a1r
(n−1) + · · ·+ an−1r + an = 0
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and f ∈ P(R). The situation where T is an operator on an infinite di-
mensional vector space with a finite dimensional kernel is important in the
theory of differential equations.

The following Proposition lays some of the groundwork for Theorem
7.17, which is our next main result.
Proposition 7.16. The kernel and image of a linear transformation T :
V → W are subspaces of V and W are respectively. Furthermore, T is one
to one if and only if ker(T ) = {0}.

Proof. The first assertion is straightforward, so we will omit the proof. Sup-
pose that T is one to one. Then, since T (0) = 0, ker(T ) = {0}. Conversely,
suppose ker(T ) = {0}. If x,y ∈ V are such that T (x) = T (y), then

T (x)− T (y) = T (x− y) = 0.

Thus, x− y ∈ ker(T ), so x− y = 0. Hence x = y, so T is one to one.

The main result on the kernel and image is the following.
Theorem 7.17. Suppose T : V → W is a linear transformation where
dimV = n. Then

dim ker(T ) + dim im(T ) = n. (7.18)

In fact, if dim ker(T ) = k > 0, then there exists a basis v1,v2, . . . ,vn of
V so that v1,v2, . . .vk is a basis of ker(T ), and, provided ker(T ) 6= V ,
T (vk+1), T (vk+2), . . . , T (vn) is a basis of im(T ).

Proof. Choose any basis v1,v2, . . .vk of ker(T ). If ker(T ) = V , clearly
im(T ) = {0}, and we’re through. Otherwise, we may, by the Dimension
Theorem, extend the basis of ker(T ) to any basis v1,v2, . . . ,vn of V . I
claim that T (vk+1), T (vk+2), . . . , T (vn) span im(T ). Indeed, if w ∈ im(T ),
then w = T (v) for some v ∈ V . But v =

∑
aivi, so

T (v) =
n∑
i=1

aiT (vi) =
n∑

i=k+1

aiT (vi),

since v1,v2, . . .vk lie in ker(T ). To see that T (vk+1), T (vk+2), . . . , T (vn)
are independent, let

n∑
i=k+1

aiT (vi) = 0.

Then T (
∑n

i=k+1 aivi) = 0, so
∑n

i=k+1 aivi ∈ ker(T ). But if
∑n

i=k+1 aivi 6=
0, the vi (1 ≤ i ≤ n) cannot be a basis, since every vector in ker(T ) is a
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linear combination of the vi with 1 ≤ i ≤ k. This shows that
∑n

i=k+1 aivi =
0, so each ai = 0. Therefore, T (vk+1), T (vk+2), . . . , T (vn) give a basis of
im(T ).

Theorem 7.17 should be viewed as the final version of the basic princi-
ple that in a linear system, the number of free variables plus the number
of corner variables is the total number of variables, which was originally
formulated in Chapter 2 (see (2.6)).

7.5.2 Vector Space Isomorphisms

One application of the existence result Proposition 7.1 is that if V andW are
two vector spaces over F having the same dimension, then there exists a one
to one linear transformation T : V → W such that T (V ) = W . Hence, two
finite dimensional vector spaces over the same field with the same dimension
are in a sense indistinguishable. A linear transformation S : V → W which
is both one to one and onto (i.e. bijective) is said to be an isomorphism
between V and W .

Proposition 7.18. Two finite dimensional vector spaces V and W over the
same field are isomorphic if and only if they have the same dimension.

Proof. We leave this as an exercise.

Example 7.19 (L(V,W )). Suppose dimV = n and dimW = m. We
know that the dimension of the space L(V,W ) of linear transformations
with domain V and target W is mn. We also know dim Fm×n = mn. Let
us find an isomorphism from L(V,W ) to Fm×n. In fact, if we choose bases
B = {v1, . . . ,vn} for V and B′ = {w1, . . . ,wm} of W , we get a mapping
Φ : L(V,W ) → Fm×n by assigning to any T ∈ L(V,W ) its matrix MB

B(T ).
I claim Φ is an isomorphism. In fact, Φ is clearly linear (see Exercise 7.40).
It is one to one, since if Φ(T ) = MB′

B (T ) = O, then T = O. It’s also clear
that Φ is onto. (For example, we could note that since dim Fm×n = mn and
dim ker(T ) = 0, dim im(T ) = mn as well (why?). Therefore, Φ is indeed an
isomorphism.

7.5.3 Complex Linear Transformations

The purpose of this section is to explain when a linear transformation S :
R2n → R2n is actually a complex linear transformation from Cn to itself.
Every vector z in complex n-space Cn is uniquely decomposable as z =
x+iy, where x and y are both in Rn. The transformation T : Cn → Rn×Rn
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defined by T (z) = (x,y)T is an isomorphism of real vector spaces, provided
we think of Cn as a real vector space by restricting the scalars to the real
numbers. For example, if n = 2, then

T

(
a1 + ib1
a2 + ib2

)
=


a1

a2

b1
b2

 .

Now suppose S : Rn × Rn → Rn × Rn is a real linear transformation.
Our plan is to determine when S complex linear in the sense that there is a
complex linear transformation S : Cn → Cn such that S = T−1ST .

The answer is quite simple. Suppose S is complex linear. Then S(iz) =
iS(z) for all z ∈ Cn. Now T (iz) = T (−y + ix) = (−y,x), so this suggests
we consider the real linear transformation J : Rn × Rn → Rn × Rn defined
by J(x,y) = (−y,x). Now let S : Rn × Rn → Rn × Rn be a real linear
transformation, and define a real linear transformation S : Cn → Cn by
S = T−1ST. Then we have

Proposition 7.19. The transformation S : Cn → Cn is C-linear if and only
if JS = SJ .

Proof. Suppose z = x + iy. Note first that S is C-linear if and only if
S(iz) = iS(z) (Exercise 7.78). So it sufficies to show S(iz) = iS(z) if and
only if SJ = JS. Write S(x,y) = (S1(x,y), S2(x,y)). Since TS = ST and
T is injective, we can infer S(z) = S1(x,y) + iS2(x,y). Now,

S(iz) = T−1ST (−y + ix)
= T−1S(−y,x)
= T−1SJ(x,y)

On the other hand,

iS(z) = −S2(x,y) + iS1(x,y)
= T−1(−S2(x,y), S1(x,y))
= T−1J(S1(x,y), S2(x,y))
= T−1JS(x,y)

Thus S(iz) = iS(z) if and only if SJ(x,y) = JS(x,y), which is just what
we needed to show.
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Example 7.20. Let’s illustrate the above Proposition in the case n=1.
Here, C = R× R. Thus J : R2 → R2 is the transformation

J

(
x
y

)
=
(
−y
x

)
.

Then the matrix of J with respect to to standard basis is

M(J) =
(

0 −1
1 0

)
.

Suppose z = x+ iy and S(z) = S1(x, y) + iS2(x, y). (Here we write vectors
as rows.) Now let S(x, y) = (ax + by, cx + dy)T , so the matrix of S with
respect to to standard basis is

M(S) =
(
a b
c d

)
.

Then JS(x, y) = SJ(x, y) if and only if(
0 −1
1 0

)(
a b
c d

)
=
(
a b
c d

)(
0 −1
1 0

)
.

Carrying out the multiplication, we see that this means(
−c −d
a b

)
=
(
b −a
d −c

)
.

This is equivalent to a = d and b = −c. Hence a linear transformation
S : R2 → R2 defines a C-linear transformation if and only if S = TM , where
M has the form

M =
(
a −b
b a

)
.

The astute reader will notice that

M =
(
a −b
b a

)
=
(√

a2 + b2
)
Rθ,

where θ = cos−1(a/
√
a2 + b2). Hence, every complex linear map of C = R2

to itself is a multiple of a rotation.

More generally, if S : R2n = Rn × Rn → R2n = Rn × Rn is any linear
transformation, we can analogously write the matrix of S in block form as

M(S) =
(
A B
C D

)
,
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where A, B, C, D ∈ Rn×n. Now the matrix M(J) of J is

M(J) =
(
O −In
In O

)
.

Thus, imitating the previous example, we have SJ = JS if and only if
M(S)M(J) = M(J)M(S) if and only if(

A B
C D

)(
O −In
In O

)
=
(
O −In
In O

)(
A B
C D

)
.

As above, this means that(
B −A
D −C

)
=
(
−C −D
A B

)
,

whence A = D and C = −B. Thus SJ = JS if and only if

M(S) =
(
A B
−B A

)
.

Thus we have
Proposition 7.20. A linear transformation S : R2n = Rn × Rn → R2n =

Rn×Rn with matrix M(S) =
(
A B
C D

)
, with respect to the standard basis,

defines a complex linear transformation S = T−1ST : Cn → Cn if and only
if C = −B and A = D. In this case,

M(S) =
(
A B
−B A

)
.
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Exercises

Exercise 7.50. Suppose T : V → V is a linear transformation, where V is fi-
nite dimensional over F. Find the relationship between between N (MB

B(T ))
and N (MB′

B′(T )), where B and B′ are any two bases of V .

Exercise 7.51. Describe both the column space and null space of the matrix1 1 0
2 3 1
1 2 1

 .

Exercise 7.52. Prove the first part of Proposition 7.16 using only the basic
definition of a linear transformation. That is, show that the kernel and
image of a linear transformation T are subspaces of the domain and target
of T respectively. Also, show that if V is a finite dimensional vector space ,
then dimT (V ) ≤ dimV .

Exercise 7.53. Let A and B be n× n matrices.

(a) Explain why the null space of A is contained in the null space of BA.

(b) Explain why the column space of A contains the column space of AB.

(c) If AB = O, show that col(B) is a subspace of N (A).

Exercise 7.54. Assume a,b ∈ R3 and a 6= 0. Describe, in terms of the
transformation Ca,

(i) {x ∈ R3 | a× x = b}, and

(ii) {y ∈ R3 | a× x = y ∃ x ∈ R3}.

Exercise 7.55. Suppose A is any real m × n matrix. Show that when we
view both row(A) and N (A) as subspaces of Rn,

row(A) ∩N (A) = {0}.

Is this true for matrices over other fields, e.g. F2 or C?

Exercise 7.56. Show that if A is any symmetric real n × n matrix, then
col(A) ∩N (A) = {0}.

Exercise 7.57. Suppose A is a square matrix over an arbitrary field. Show
that A2 = O if and only if col(A) ⊂ N (A).

Exercise 7.58. Find an example of a 2 × 2 matrix A over F2 such that
col(A) = N (A).
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Exercise 7.59. Find an example of a 3 × 3 matrix A over F2 such that
col(A) = N (A) or explain why no such example exists.

Exercise 7.60. Suppose A is a square matrix over an arbitrary field. Show
that if Ak = O for some positive integer k, then dimN (A) > 0.

Exercise 7.61. Suppose A is a symmetric real matrix so that A2 = O.
Show that A = O. In fact, show that col(A) ∩N (A) = {0}.

Exercise 7.62. Find a non zero 2×2 symmetric matrix A over C such that
A2 = O. Show that no such a matrix exists if we replace C by R.

Exercise 7.63. For two vectors x and y in Rn, the dot product x ·y can be
expressed as xTy. Use this to prove that for any real matrix A, ATA and
A have the same nullspace. Conclude that ATA and A have the same rank.
(Hint: consider xTATAx.)

Exercise 7.64. Consider the subspace W of R4 spanned by (1, 1,−1, 2)T

and (1, 1, 0, 1)T . Find a system of homogeneous linear equations whose
solution space is W .

Exercise 7.65. What are the null space and image of

(i) a projection Pb : R2 → R2,

(ii) the cross product map T (x) = x× v.

Exercise 7.66. What are the null space and image of a reflection Hb :
R2 → R2. Ditto for a rotation Rθ : R2 → R2.

Exercise 7.67. Ditto for the projection P : R3 → R3 defined by

P

xy
z

 =
(
x
y

)
.

Exercise 7.68. Let A be a real 3× 3 matrix such that the first row of A is
a linear combination of A’s second and third rows.

(a) Show that N (A) is either a line through the origin or a plane containing
the origin.

(b) Show that if the second and third rows of A span a plane P , then N (A)
is the line through the origin orthogonal to P .
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Exercise 7.69. Let T : Fn → Fn be a linear transformation such that
ker(T ) = 0 and im(T ) = Fn. Prove the following statements.

(a) There exists a transformation S : Fn → Fn with the property that
S(y) = x if and only if T (x) = y. Note: S is called the inverse of T .

(b) Show that in addition, S is also a linear transformation.

(c) If A is the matrix of T and B is the matrix of S, then BA = AB = In.

Exercise 7.70. Prove Proposition 7.18. That is, show two finite dimen-
sional vector spaces V and W over the same field are isomorphic if and only
if they have the same dimension.

Exercise 7.71. Let F : R2 → R2 be the linear transformation given by

F

(
x
y

)
=
(

y
x− y

)
.

(a) Show that F has an inverse and find it.

(b) Verify that if A is the matrix of F , then AB = BA = I2 if B is a matrix
of the inverse of F .

Exercise 7.72. Let S : Fn → Fm and T : Fm → Fp be two linear transfor-
mations both of which are one to one. Show that the composition T ◦ S is
also one to one. Conclude that if A ∈ Fm×n has N (A) = {0} and B ∈ Fn×p
has N (B) = {0}, then N (BA) = {0} too.

Exercise 7.73. Show that if T : V → W is a linear transformation that
sends a basis of V to a basis of W , then T is an isomorphism.

Exercise 7.74. Let W be a subspace of a finite dimensional vector space
V . Show that there exists a linear transformation T : V → V such that
ker(T ) = W .

Exercise 7.75. Suppose V and W are finite dimensional vector spaces over
F which have the same dimension, and let T : V →W be linear. Show that
T is an isomorphism if and only if either T is injective or T is surjective.

Exercise 7.76. Suppose T : V → W is linear. Show that there exists a
unique linear transformation T : V/ ker(T ) →W such that T (v+ker(T )) =
T (v).

Exercise 7.77. Let U , V and W be finite dimensional vector spaces over
the same field F, and let S : U → V and T : V → W be linear. Show the
following.

(a) TS is injective if and only if S is injective and im(S) ∩ ker(T ) = {0}.



223

(b) TS is surjective if and only if T is surjective and V = im(S) + ker(T ).

(c) Concude that TS is an isomorphism if and only if S is injective, T is
surjective and dimU = dimW .

Exercise 7.78. Suppose S : Cn → Cn is real linear. Show that S is complex
linear if and only if S(iz) = iS(z) for all z ∈ Cn.

Exercise 7.79. Let S : R2 → R2 be the real linear transformation defined
by S(z) = z. Determine whether or not S is complex linear.

Exercise 7.80. Prove Proposition 7.18.

Exercise 7.81. Let W = Fn×n, and for each A ∈ W , define a transforma-
tion adA : W →W by adA(X) = AX −XA.

(i) Show that adA is indeed linear for each A ∈ Fn×n.

(ii) Describe the kernel of adA for any A.

(iii) Suppose n = 2 and A = diag(a1, a2). Compute the matrix of adA with
respect to the basis Eij (1 ≤ i, j ≤ 2) of W . Note that this matrix is 4× 4 .

(iv) Find the kernel of adA if a1 6= a2.

Exercise 7.82. Prove Proposition 7.18.
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7.6 Summary

A linear transformation between two vector spaces V and W over the same
field (called the domain and target) is a transformation T : V → W which
has the property that T (ax+ by) = aT (x) + bT (y) for all x,y in V and a, b
in F. In other words, a transformation is linear if it preserves all linear com-
binations. Linear transformations are a way of using the linear properties
of V to study W . The set of all linear transformations with domain V and
target W is another vector space over F denoted by L(V,W ). For example,
if V and W are real inner product spaces, the linear transformations which
preserve the inner product are called orthogonal.

Matrix theory is enters into the theory of linear transformations because
every linear transformation can represented as a matrix. In particular, if
V = Fn and W = Fm, then a linear transformation T : V → W is nothing
but an m× n matrix over F, i.e. an element of Fm×n which we will usually
denote by M(T ). Conversely, every element of A ∈ Fm×n defines such a
linear transformationTA : Fn → Fm. If V and W are finite dimensional, then
whenever we are given bases B of V and B′ of W , we can associate a unique
matrixMB

B′(T ) to T . There are certain rules for manipulating these matrices
explained in the text. They amount to the rule M(T ◦ S) = M(T )M(S)
when S : Fp → Fn and T : Fn → Fm are both linear. If we express a
linear transformation T : V → V in terms of two bases B and B′ of V , then
MB′

B′(T ) = PMB
B(T )P−1 where P = MB′

B is a certain change of basis matrix.
This means that two matrices representing the same linear transformation
T : V → V are similar. Thus, two similar matrices represent the same single
linear transformation.

There are two fundamental spaces associated with a linear transforma-
tion: its kernel ker(T ) and its image im(T ). The kernel and image of a lin-
ear transformation T correspond to the null space and column space of any
matrix representing T . The fundamental relationship from Chapter 2 which
said that in a linear system, the number of variables equals the number of free
variables plus the number of corner variables takes its final form for a linear
transformation T : V →W in the identity dimV = dim ker(T )+dim im(T ).
If dim ker(T ) = 0 and dim im(T ) = dimW , then T is one to one and onto.
In this case, it is called an isomorphism. linear transformation T : V → W
taking arbitrarily preassigned values

One of the main general questions about linear transformations is this:
when is a linear transformation T : V → V semi-simple? That is, when
does there exist a basis B of V for which MB

B(T ) is diagonal. Such a basis is
called an eigenbasis. Put another way, when is MB

B(T ) similar to a diagonal
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matrix? We will provide an answer in Chapter 13 for the case when F is
algebraically closed.
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Chapter 8

An Introduction to the
Theory of Determinants

The determinant of a square matrix A is a fundamental scalar associated to
A with a long mathematical history. Most students first encounter it in the
statement of Cramer’s Rule, which has as a special case, the formula for the
inverse of A (see Section 8.3.3 and Exercise 2.3). The determinant seems
to have first appeared in a paper of Liebniz published in 1683, and it has
since acquired a long and distinguished list of applications. We will use it in
Chapter 10 to define the characteristic polynomial of A, which is the basic
tool for finding A’s eigenvalues.

The purpose of this chapter is to introduce the determinant and derive
its basic properties.

8.1 The Definition of the Determinant

Let F denote an arbitrary field, and assume A ∈ Fn×n. The purpose of this
Section is to define a scalar det(A) ∈ F, called the determinant of A. This
scalar has a number of remarkable properties. For example, if A,B ∈ Fn×n,
then det(AB) = det(A) det(B). Moreover, det(A) 6= 0 if and only if A is
nonsingular, i.e. A−1 exists. In particular, the nullspace of any A ∈ Fn×n
has positive dimension if and only if det(A) = 0. This is a standard criterion
for determining when a matrix is singular.

The definition of det(A) given in (8.2) below is a sum with n! terms,
so, at first glance, any hope of finding a general method for computing it is
useless. Fortunately, as we will eventually see, row operations enable det(A)
to be computed far more efficiently.
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8.1.1 The 1× 1 and 2× 2 Cases

If A is 1 × 1, say A = (a), we will put det(A) = a. This definition clearly
gives the two properties we want. Namely, if A and B are 1 × 1, then
det(AB) = det(A) det(B), and A−1 exists if and only if det(A) 6= 0.

The 2× 2 case requires more cleverness. Here we put

det
(
a b
c d

)
= ad− bc.

To see what this quantity measures, note that ad − bc = 0 if and only if
the rows of A are proportional. Thus, A has rank zero or one if and only if
det(A) = 0 and rank 2 if and only if ad − bc 6= 0. Thus, A is invertible if
and only if det(A) 6= 0. In fact, recall that if A−1 exists, then

A−1 =
1

(ad− bc)

(
d −b
−c a

)
.

This is a special case of Cramer’s Rule.
Proposition 8.1. For any field F, the determinant function det : F2×2 → F
has the following properties:

(1) det(A) 6= 0 if and only if A is invertible;

(2) det(I2) = 1; and

(3) det(AB) = det(A) det(B) for any A,B ∈ F2×2.

Proof. We indicated the proof of (1) above. Statement (2) is obvious, and
(3) can be checked by a direct calculation.

8.1.2 Some Combinatorial Preliminaries

Unlike many situations where we need to generalize a concept from the two
dimensional case to the n dimensional case, the definition of det(A) for 2×2
matrices gives only the slightest hint of what to do for n×n matrices so that
the three properties listed Proposition 8.1 still hold. The general definition
will require us to introduce some elementary combinatorics.

Let Xn denote {1, 2, . . . , n}. A bijection σ : Xn → Xn is called a permu-
tation on n letters, and the set of all permutations on n letters is denoted by
S(n). One usually calls S(n) the symmetric group on n letters. The study
of S(n) (for any n) is one of the basic topics in the subject of combinatorics.
We will presently see that S(n) can be identified with the matrix group of
n×n permutation matrices. To begin, we state some of the basic properties
of S(n).
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Lemma 8.2. The symmetric group S(n) has exactly n! elements. Moreover,
if π, σ ∈ S(n), then the composition σπ ∈ S(n). Finally, the inverse σ−1 of
any σ ∈ S(n) is also in S(n).

Proof. The first statement is an application of elementary combinatorics.
The other two claims are obvious consequences of the definition of a bijec-
tion.

In order to define the determinant, we also need to define the signature
of a permutation, which goes as follows.

Definition 8.1. Let σ ∈ S(n). Define the signature of σ to be the rational
number

sgn(σ) =
∏
i<j

σ(i)− σ(j)
i− j

.

Note that sgn(σ) is a nonzero rational number since σ(i) 6= σ(j) if i 6= j.

Example 8.1. The identity permutation of S(n) will be denoted by idn.
Since idn(j) = j for all j ∈ Xn, sgn(idn) = 1. To see another example, let
σ(1) = 2, σ(2) = 1 and let σ(i) = i if i > 2. Then if i < j,

σ(i)− σ(j)
i− j

> 0

except when i = 1 and j = 2. Thus sgn(σ) < 0. In fact, as we will now see,
sgn(σ) = −1.

Proposition 8.3. For any σ ∈ S(n), sgn(σ) = ±1.

Proof. Since σ is a bijection of Xn, and

σ(i)− σ(j)
i− j

=
σ(j)− σ(j)

j − i
,

it follows that

(sgn(σ))2 =
∏
i6=j

σ(i)− σ(j)
i− j

.

Moreover, σ defines a bijection from the set T = {(i, j) | 1 ≤ i, j ≤ n, i 6= j}
to itself by (i, j) 7→ (σ(i), σ(j)). (Reason: it is clear that this mapping is
injective, hence it’s also surjective by the Pigeon Hole Principle.) Thus∏

i6=j
(σ(i)− σ(j))2 =

∏
i6=j

(i− j)2,
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so sgn(σ)2 = 1. .

Notice that if i < j, then

σ(i)− σ(j)
i− j

> 0

exactly when σ(i) < σ(j). Therefore

sgn(σ) = (−1)m(σ),

where
m(σ) = |{(i, j) | i < j, σ(i) > σ(j)}|.

Most facts about permutations can be deduced by considering trans-
positions. A transposition is an element σ of S(n) which interchanges two
elements ofXn and fixes all the others. The transposition which interchanges
a 6= b in Xn is denoted by σab.

Example 8.2. For example, σ12 interchanges 1 and 2 and fixes every integer
between 3 and n . I claim m(σ12) = 1. For, the only pair (i, j) such that
i < j for which σ12(i) > σ12(j) is the pair (1, 2). Hence sgn(σ12) = −1, Note
that σ12 is the permutation σ of the previous example.

We will need the explicit value for the signature of an arbitrary trans-
position. This is one of the results in the main theorem on the signature,
which we now state and prove.
Theorem 8.4. The signature mapping sgn : S(n) → {±1} satisfies the
following properties:

(1) for all σ, τ ∈ S(n), sgn(τσ) = sgn(τ)sgn(σ);

(2) if σ is a transposition, then sgn(σ) = −1; and

(3) if σ is the identity, then sgn(σ) = 1.

Proof. First consider sgn(τσ). We have

sgn(τσ) =
∏
i<j

τσ(i)− τσ(j)
i− j

=
∏
i<j

τ(σ(i))− τ(σ(j))
σ(i)− σ(j)

∏
i<j

σ(i)− σ(j)
i− j

=
∏
r<s

τ(r)− τ(s)
r − s

∏
i<j

σ(i)− σ(j)
i− j

= sgn(τ)sgn(σ).
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Here, the third equality follows since σ is a permutation and

τ(σ(i))− τ(σ(j))
σ(i)− σ(j)

=
τ(σ(j))− τ(σ(i))

σ(j)− σ(i)
.

Thus we get (1).
The proof of (2) uses the result of Example 8.1. Consider an arbitrary

transposition σab, where 1 ≤ a < b ≤ n. I claim

σab = σ1bσ2aσ12σ2aσ1b. (8.1)

We leave this as an exercise. By (1) and the fact that sgn(σ)2 = 1 for all σ,

sgn(σab) = sgn(σ1b)sgn(σ2a)sgn(σ12)sgn(σ2a)sgn(σ1b) = sgn(σ12).

But sgn(σ12) = −1, so we get also (2). The last statement is obvious, so the
proof is finished.

8.1.3 The Definition of the Determinant

We now give the general definition. Let F be any field, and let A ∈ Fn×n.

Definition 8.2. The determinant det(A) of A is defined to be

det(A) :=
∑

π∈S(n)

sgn(π) aπ(1)1aπ(2)2 · · · aπ(n)n (8.2)

If A is 1 × 1, say A = (a), then we already defined det(A) = a. This
agrees with the formula since S(1) consists of the identity map, and the
signature of the identity is 1. Suppose next that A is 2× 2. There are only
two elements σ ∈ S(2), namely the identity id2 and σ12. Thus, by definition,

det
(
a11 a12

a21 a22

)
= +a11a22 + sgn(σ12)a21a12 = a11a22 − a21a12.

Thus the expression (8.2) agrees with the original definition.

Example 8.3 (3× 3 determinants). For the 3× 3 case, we begin by listing
the elements σ ∈ S(3) and their signatures. We will denote σ by the triple
[σ(1), σ(2), σ(3)]. Thus the signatures are given by the following table:

π [1, 2, 3] [2, 1, 3] [3, 2, 1] [1, 3, 2] [3, 1, 2] [2, 3, 1]
sgn(π) 1 −1 −1 −1 +1 1

.

Hence,

det(A) = a11a22a33 − a21a12a33 − a31a22a13

−a11a32a23 + a31a12a23 + a21a32a13,

which is a standard formula for a 3× 3 determinant.
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8.1.4 Permutations and Permutation Matrices

Permutations and permutation matrices are closely related. Since a permu-
tation matrix P is a square matrix of zeros and ones so that each row and
each column contains exactly one non-zero entry, P is uniquely determined
by a permutation σ. Namely, if the ith column of P contains a 1 in the
jth row, we put σ(i) = j. If P is n × n, this defines a unique element
σ = σ(P ) ∈ S(n). Conversely, given σ ∈ S(n), define a permutation matrix
Pσ by putting

Pσ = (eσ(1) eσ(2) · · · eσ(n)),

where eσ(i) is the standard basis vector whose σ(i)th-component is 1.

Proposition 8.5. The mapping σ → Pσ defines a one to one corresponence
between S(n) and the set P (n) of n× n permutation matrices.

Proof. This is obvious consequence of the definitions.

Example 8.4. As in the 3× 3 case, we can represent any σ ∈ S(n) by the
symbol

[σ(1), σ(2), . . . , σ(n)].

For example, the identity permutation of S(3) is [1, 2, 3]. It corresponds to
the permutation matrix I3. The permutation [2, 3, 1] corresponds to

P[2,3,1] =

0 0 1
1 0 0
0 1 0

 ,

and so forth. Note that the non-zero element of the ith column of Pσ is
pσ(i)i. Let’s see what what happens when we form the product P[2,3,1]A. We
have

P[2,3,1]A =

0 0 1
1 0 0
0 1 0

a1

a2

a3

 =

a3

a1

a2

 .

More generally, let P[i,j,k] be the 3×3 permutation matrix in which the first
row of I3 is in the ith row, the second in the jth row and the third in the
kth row. Then P[i,j,k]A is obtained from A by permutating the rows of A by
the permutation [i, j, k].
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8.1.5 The Determinant of a Permutation Matrix

We now find the determinants of permutation matrices.
Proposition 8.6. If P ∈ P (n) has the form Pσ, then det(P ) = sgn(σ).

Proof. We know that the only nonzero entries of Pσ are the entries of the
form pσ(i)i, all of which are 1 (see Example 8.4). Since

det(Pσ) =
∑

π∈S(n)

sgn(π) pπ(1)1pπ(2)2 · · · pπ(n)n,

the only non-zero term is

sgn(σ)pσ(1)1pσ(2)2 · · · pσ(n)n = sgn(σ).

Therefore, det(Pσ) = sgn(σ), as claimed.

We now prove an important preliminary step in the our treatment of the
determinant. We know that row swap matrices are permutation matrices.
In fact, they are the permutation matrices coming from transpositions. We
now want to show
Proposition 8.7. If S is an n× n row swap matrix and P is an n× n per-
mutation matrix, then det(SP ) = −det(P ). In particular, if a permutation
matrix P is a product of row swaps matrices, say P = S1S2 · · ·Sm, then
det(P ) = (−1)m.

Proof. Let P = Pτ , where

Pτ = (eτ(1) eτ(2) · · · eτ(n)),

and let S = Pσ, where σ is the transposition sending i to j and fixing all
other k ∈ Xn. That is, σ = σij . We need to calculate SP . In fact, I claim

SP = (eστ(1) eστ(2) · · · eστ(n)). (8.3)

Indeed, suppose τ(k) = i and τ(`) = j. Thus τ(k) = σ(j), and τ(`) = σ(i).
This means that σ−1τ(k) = j and σ−1τ(`) = i. But as σ is a transposition,
σ−1 = σ, so στ(k) = j and στ(`) = i. We now compute SP directly. For
this, we may suppose without loss of generality that i < j. Then

SP = S(eτ(1) · · · eτ(k)=i · · · eτ(`)=j · · · eτ(n))
= (eτ(1) · · · eτ(`)=j · · · eτ(k)=i · · · eτ(n))
= (eστ(1)=τ(1) · · · eστ(k)=j · · · eστ(`)=i · · · eστ(n)=τ(n))
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This gives us (8.3) as claimed. The upshot of this calculation is that

PσPτ = Pστ (8.4)

for all τ ∈ S(n) if σ ∈ S(n) is any transposition. The Proposition now
follows since

det(SP ) = det(Pστ ) = sgn(στ) = sgn(σ)sgn(τ) = −sgn(τ) = −det(P ),

since det(P ) = sgn(τ) and sgn(σ) = −1.

Formula (8.4) in fact holds in general. That is, for all σ, τ ∈ S(n), we
have Pστ = PσPτ . We invite the reader to prove this in Exercise 8.9 below.
What it says is in terms of abstract algebra is that, as groups, P (n) and
S(n) are isomorphic.

In the next Section, we will apply these results on permutation matrices
to obtain the rules for computing determinants via row operations.
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Exercises

Exercise 8.1. Write down two 4× 4 matrices A,B each with at most two
zero entries such that det(A) det(B) 6= 0.

Exercise 8.2. Prove Proposition 8.2.

Exercise 8.3. If A is n× n and r is a scalar, find a formula for det(rA).

Exercise 8.4. Let A =

a1

a2

a3

 and A′ =

a′1
a2

a3

 be two elements of F3×3

written in row form. Find a formula for det(B) in terms of det(A) and
det(A′) if

B =

a1 + ra′1
a2

a3


for some r ∈ F.

Exercise 8.5. Find the determinant of a 2× 2 reflection matrix.

Exercise 8.6. Find the determinant of a 2× 2 rotation matrix.

Exercise 8.7. Classify the elements of O(2,R) according to their determi-
nants.

Exercise 8.8. Prove Equation (8.1).

Exercise 8.9. Show that every permutation τ ∈ S(n) can be written as a
product of transpositions. (This isn’t hard, but it’s somewhat long to write
out. For some hints, consult a book on elementary algebra.) Then use this
to prove that Pστ = PσPτ for all σ, τ ∈ S(n).
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8.2 Determinants and Row Operations

In the last section, we defined the determinant function and showed that
the determinant of a permutation matrix is the signature of its permutation.
This gives some insight as to how determinants are computed in general. But
it’s clear that trying to compute a determinant from the definition won’t get
us very far, so we need more tools. We will now show that elementary row
operations once again turn out to give us what we need.

We begin by slightly reformulating the definition. This will simplify
matters, especially for studying the Laplace expansion. For any A ∈ Fn×n,
put

δ(A) =
n∏
i=1

aii.

That is, δ(A) is the product of all the diagonal entries of A.
For example, it can be seen (by staring long enough at the definition of

det(A)) that if A is upper or lower triangular, then det(A) = δ(A). This is
also stated in Proposition 8.9 below. Our recasting of the definition is the
formula in the next Proposition.
Proposition 8.8. If A ∈ Fn×n, then

det(A) =
∑

σ∈S(n)

det(Pσ)δ(PσA), (8.5)

Before giving the proof, let’s calculate a 3×3 example. Consider δ(PA),
where P is the matrix P[2,3,1]. Thus

P =

0 0 1
1 0 0
0 1 0

 and A =

a1

a2

a3

 .

Recall from Example 8.4 that

P[2,3,1]A =

0 0 1
1 0 0
0 1 0

a1

a2

a3

 =

a3

a1

a2

 .

Hence
δ(P[2,3,1]A) = a31a12a23.

Since σ(1) = 2, σ(2) = 3 and σ(3) = 1, we see that σ−1(1) = 3, σ−1(2) = 1
and σ−1(3) = 2. Thus

δ(PσA) = aσ−1(1)1aσ−1(2)2aσ−1(3)3.
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Let’s now give the proof of Proposition8.8.

Proof. From the above calculation,

δ(PσA) = aσ−1(1)1aσ−1(2)2 · · · aσ−1(n)n.

As sgn(σ) = sgn(σ−1) (why?), we have

sgn(σ)δ(PσA) = sgn(σ−1)aσ−1(1)1aσ−1(2)2 · · · aσ−1(n)n.

Now, as σ varies over all of S(n), so does σ−1, hence we see that

det(A) =
∑

σ∈S(n)

sgn(σ) aσ(1)1aσ(2)2 · · · aσ(n)n

=
∑

σ∈S(n)

sgn(σ−1) aσ−1(1)1aσ−1(2)2 · · · aσ−1(n)n

=
∑

σ∈S(n)

sgn(σ)δ(PσA)

=
∑

σ∈S(n)

det(Pσ)δ(PσA).

8.2.1 The Main Result

The strategy for computing determinants is explained by first considering
the triangular case.
Proposition 8.9. Suppose A is n× n and upper triangular, that is, every
element in A below the diagonal is zero. Then

det(A) = δ(A) = a11a22 · · · ann.

The same formula also holds for a lower triangular matrix.

Proof. The point is that the only nonzero term in det(A) is a11a22 · · · ann.
For if P is a permutation matrix different from the identity, then there has
to be an index i so that the ith row of PA is different from the ith row of
A. But that means PA has to have a 0 on the diagonal, so δ(PA) = 0.

Hence the key to computing higher order determinants is to use row
operations to bring A into triangular form. Thus we need to investigate how
det(A) changes after a row operation is performed on A. Our main result is
that the determinant function obeys the following rules with respect to row
operations.
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Theorem 8.10. Let F be an arbitrary field, and suppose n ≥ 2. Then the
following four properties hold for all A,B ∈ Fn×n.

(Det I) If B is obtained from A by a row swap, then

det(B) = −det(A). (8.6)

(Det II) If B is obtained from A by multiplying a row of A by a (possibly
zero) scalar r, then

det(B) = r det(A). (8.7)

(Det III) If B is obtained from A by replacing the ith row by itself plus a
multiple of the jth row, i 6= j, then

det(B) = det(A). (8.8)

(Det IV) det(In) = 1.

Proof. To prove (Det I), suppose B = SA, where S swaps two rows, but
leaves all the other rows alone. By the previous Proposition,

det(B) = det(SA) =
∑

P∈P (n)

det(P )δ(P (SA)).

Since S and P are permutation matrices, so is Q = PS. But the map
P → PS is an injection of S(n) to itself (why?). Thus the Pigeon Hole
Principle (Proposition 4.8) tells us that P → PS is a bijection of S(n).
Hence,

det(SA) =
∑

P∈P (n)

det(PS)δ((PS)SA)

=
∑

P∈P (n)

−det(P )δ(PS2A)

= −
∑

P∈P (n)

det(P )δ(PA)

= −det(A),

since S2 = In, and det(PS) = −det(P ) (Proposition8.8). Putting B = SA
gives us (Det I).

To prove (Det II), suppose E multiplies the i-th row of A by the scalar r.
Then for every P ∈ P (n), δ(P (EA)) = rδ(PA). Thus det(EA) = r det(A).
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(Det III) follows from two facts. First of all, suppose A,A′ ∈ Fn×n
coincide in all but one row, say the kth row. That is, if A = (aij) and
A′ = (a′ij), then aij = a′ij as long as i 6= k. Now define a matrix B = (bij)
by bij = aij = a′ij if i 6= k, and bkj = akj + a′kj . We claim

det(B) = det(A) + det(A′). (8.9)

To prove (8.9), fix π ∈ S(n) and consider

sgn(π) bπ(1)1 · · · bπ(n)n.

There exists exactly one index j such that π(j) = k. Then, by the definition
of B, bπ(j)j = aπ(j)j + a′π(j)j . Hence,

sgn(π) bπ(1)1 · · · bπ(n)n = sgn(π) aπ(1)1 · · · aπ(n)n + sgn(π) a′π(1)1 · · · a
′
π(n)n,

hence we get (8.9).
Now suppose E is the elementary matrix of type III is obtained from In

by replacing the ith row of In by itself plus a times the jth row, where i 6= j.
Thus B = EA. Let C be the matrix which is the same as A except that the
ith row of C is a times the jth row of A. Then from (8.9), we know that
det(B) = det(A) + det(C). Furthermore, by (Det II), det(C) = adet(C ′),
where C ′ is the result of factoring a from the ith row of C. Thus

det(B) = det(A) + adet(C ′),

where C ′ is a matrix whose ith and jth rows coincide. Thus (Det III) will
be proved once we establish
Lemma 8.11. If C ∈ Fn×n has two equal rows, then det(C) = 0.

There is an easy way to see this if the characteristic of F is different
from 2. For, if the rth and sth rows of C coincide, then by (Det I),
det(C) = −det(C). This implies 2 det(C) = 0, so det(C) = 0. We will
give a proof of this which works for any characteristic, but we first need to
introduce the Laplace expansion. This will be done in Section 8.3.1.

(Det IV) follows immediately from Proposition 8.9, so the Theorem is
proved, modulo the above Lemma.

In particular, since det(In) = 1, Det I-Det III imply that if E is an
elementary matrix, then

det(E) =


−1 if E is of type I,
r if E is of type II,
1 if E is of type III

Therefore we can summarize Det I-Det III in the following way.
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Corollary 8.12. If A ∈ Fn×n and E ∈ Fn×n is elementary, then

det(EA) = det(E) det(A). (8.10)

In particular, if A = E1 · · ·Ek, where E1, . . . , Ek are elementary, then

det(A) = det(E1) · · ·det(Ek). (8.11)

Proof. If E is a row swap , then det(EA) = −det(A) by Det I. If E is of type
II, say det(E) = r, then by Det II, det(EA) = r det(A) = det(E) det(A). If
E is of type III, then det(E) = 1 while det(EA) = det(A) by Det III. Hence
we get (8.10). Identity (8.11) follows by iterating the result of (8.10).

8.2.2 Consequences

Corollary 8.12 suggests a definite method for evaluating det(A). First find
elementary matrices E1, . . . , Ek such that U = Ek · · ·E1A is upper trian-
gular. By Proposition 8.9 and Corollary 8.12,

det(U) = det(E1) · · ·det(Ek) det(A) = u11u22 · · ·unn,

where the uii are the diagonal entries of U . Since no det(Ei) = 0,

det(A) =
u11u22 · · ·unn

det(E1) · · ·det(Ek)
. (8.12)

Example 8.5. Let us compute det(A), where

A =


1 0 1 1
0 1 0 1
1 1 1 1
1 1 0 1

 ,

taking the field of coefficients to be Q. We can make the following sequence
of row operations, all of type III except for the last, which is a row swap.

A→


1 0 1 1
0 1 0 1
0 1 0 0
1 1 0 1

→


1 0 1 1
0 1 0 1
0 1 0 0
0 1 −1 0

→


1 0 1 1
0 1 0 1
0 0 0 −1
0 1 −1 0

→


1 0 1 1
0 1 0 1
0 0 0 −1
0 0 −1 0

→


1 0 1 1
0 1 0 1
0 0 −1 0
0 0 0 −1


Thus det(A) = −1.
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Example 8.6. Let us next compute det(A), where A is the matrix of the
previous example, this time taking the field of coefficients to be Z2. First
add the first row to the third and fourth rows successively. Then we get

det(A) = det


1 0 1 1
0 1 0 1
0 1 0 0
0 1 1 0

 .

Since the field is Z2, row swaps also leave det(A) unchanged. Thus

det(A) = det


1 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0

 .

Adding the second row to the third row and the fourth row successively, we
get

det(A) = det


1 0 1 1
0 1 0 0
0 0 0 1
0 0 1 0

 .

Finally, switching the last two rows, we get

det(A) = det


1 0 1 1
0 1 0 0
0 0 1 0
0 0 0 1

 = 1.

Note that switching rows doesn’t change the determinant since −1 = 1 in
F2. In fact, we could also deduce that det(A) = 1 using the steps in the
previous example.

One can simplify evaluating det(A) even more in some special cases. For
example, if A has the form (

B C
O D

)
, (8.13)

where the submatrices B and C are square, then det(A) = det(B) det(D).
The proof is similar to the proof of (8.12).

To see what the determinant sees, notice that (8.12) implies det(A) 6= 0
if and only if each uii 6= 0. Since this is the case precisely when A has
maximal rank, we get
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Proposition 8.13. If A is n×n, then det(A) 6= 0 if and only if A has rank
n.

We can now prove the product formula, which was proved in Proposition
8.1 in the 2× 2 case.
Theorem 8.14. If A and B are any n× n matrices over F, then

det(AB) = det(A) det(B). (8.14)

Proof. If A and B both have rank n, each one of them can be expressed as
a product of elementary matrices, say A = E1 · · ·Ek and B = Ek+1 · · ·Em.
Then AB = (E1 · · ·Ek)(Ek+1 · · ·Em), so by Corollary 8.12,

det(AB) = det(E1) · · ·det(Ek) det(Ek+1) · · ·det(Em) = det(A) det(B).

If eitherA orB has rank less than n, then det(A) det(B) = 0. But we already
know that, in this case, the rank of AB is less that n too, so det(AB) = 0.
Thus the proof is done.

Corollary 8.15. If A is invertible, then det(A−1) = det(A)−1.

Proof. This follows from the product formula since AA−1 = In implies

1 = det(In) = det(AA−1) = det(A) det(A−1).

The following Proposition gives another remarkable about the determi-
nant.
Proposition 8.16. If A is any square matrix, then det(A) = det(AT ).

Proof. We know that A and AT have the same rank, so the result is true if
det(A) = 0. Hence we can suppose A has maximal rank. Express A as a
product of elementary matrices, say A = E1E2 · · ·Ek. Then

AT = (E1E2 · · ·Ek)T = ETk E
T
k−1 · · ·ET1 .

Thus it is sufficient to show det(ET ) = det(E) for any elementary matrix
E. This is clear if E is of type II, since elementary matrices of type II are
symmetric. If E is of type III, then so is ET , so det(E) = det(ET ) = 1.
Finally, if E is of type I, that is E is a row swap, ET = E−1. In this case,
det(E) = det(ET ) = −1.
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Exercises

Exercise 8.10. Two square matrices A and B are said to be similar if there
exists a matrix M so that B = MAM−1. Show that similar matrices have
the same determinants.

Exercise 8.11. Suppose P is an n × n matrix so that PP = P . What is
det(P )? What if P 4 = P−1?

Exercise 8.12. Suppose that Q ∈ Rn×n is orthogonal. Find the possible
values of det(Q).

Exercise 8.13. Which of the following statements are true and which are
false? Give your reasoning.

(a) The determinant of a real symmetric matrix is always non negative.

(b) If A is any 2× 3 real matrix, then det(AAT ) ≥ 0.

(c) If A is a square real matrix, then det(AAT ) ≥ 0.

Exercise 8.14. An n × n matrix A is called skew symmetric if AT = −A.
Show that if A is a skew symmetric n × n matrix and n is odd, then A
cannot be invertible.

Exercise 8.15. A complex n × n matrix U is called unitary if U−1 = U
T ,

where U is the matrix obtained by conjugating each entry of U . What are
the possible values of the determinant of det(U) of a unitary matrix U .

Exercise 8.16. Compute 
1 2 −1 0
2 1 1 1
0 −1 2 0
1 1 −1 1


in two cases: first when the field is Q and secondly when the field is Z5.
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8.3 Some Further Properties of the Determinant

In this section, we will obtain some further properties of the determinant.
We will begin with the Laplace expansion, which is the classical way of ex-
pressing an n× n determinant as a sum of (n− 1)× (n− 1) determinants.
Laplace expansion is an important theoretical tool, though not a very help-
ful computational technique. We will also give a characterization of the
determinant as a function on Fn×n and define the determinant of a linear
transformation T : V → V .

8.3.1 The Laplace Expansion

Suppose A is n × n, and let Aij denote the (n − 1) × (n − 1) submatrix
obtained from A by deleting its ith row and jth column.
Theorem 8.17. For any A ∈ Fn×n, we have

det(A) =
n∑
i=1

(−1)i+jaij det(Aij). (8.15)

This is the Laplace expansion along the jth column. The corresponding
Laplace expansion of along the ith row is

det(A) =
n∑
j=1

(−1)i+jaij det(Aij). (8.16)

Proof. Since det(A) = det(AT ), it suffices to prove (8.15) . For simplicity,
we will assume j = 1, the other cases being similar. Now,

det(A) =
∑

σ∈S(n)

sgn(σ) aσ(1)1aσ(2)2 · · · aσ(n)n

= a11

∑
σ∈S(n)
σ(1)=1

sgn(σ)aσ(2)2 · · · aσ(n)n +

+ a21

∑
σ∈S(n)
σ(1)=2

sgn(σ)aσ(2)2 · · · aσ(n)n +

+ · · ·+ an1

∑
σ∈S(n)
σ(1)=n

sgn(σ)aσ(2)2 · · · aσ(n)n

If σ ∈ S(n), let P ′σ denote the element of F(n−1)×(n−1) obtained from Pσ
by deleting the first column and the σ(1)st row. Since pσ(i)i = 1, it follows
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that P ′σ ∈ P (n− 1) (why?). Note that det(Pσ) = (−1)(σ(1)−1) det(P ′σ), since
if bringing P ′σ to In−1 by row swaps uses t steps, an additional σ(1) − 1
adjacent row swaps bring Pσ to the identity. Next, recall that

det(A) =
∑

σ∈S(n)

det(Pσ)δ(PσA).

Since det(Pσ) = (−1)(σ(1)−1) det(P ′σ), we see that for each r with 1 ≤ r ≤ n,∑
σ∈S(n)
σ(1)=r

det(Pσ)δ(PσA) = (−1)(r−1)ar1
∑

σ∈S(n)
σ(1)=r

det(P ′σ)δ(P
′
σAr1).

But the right hand side is certainly (−1)(r−1)ar1 det(Ar1), since every ele-
ment of P (n− 1) is P ′σ for exactly one σ ∈ S(n) with σ(1) = r. Therefore,

det(A) =
n∑
i=1

(−1)i−1ai1 det(Ai1),

which is the desired formula.

Example 8.7. If A is 3× 3, expanding det(A) along the first column gives

det(A) = a11(a22a33− a32a23)− a21(a12a23− a13a32) + a31(a12a23− a13a22).

This is the well known formula for the triple product a1 · (a2 × a3) of the
rows of A.

Example 8.8. The Laplace expansion is useful for evaluating det(A) when
A has entries which are functions. In fact, this situation will arise when we
consider the characteristic polynomial of a square matrix A. Consider the
matrix

Cx =

1− x 2 0
2 1− x −1
0 −1 2− x

 .

Suppose we want to find all values of x ∈ C such that Cx has rank less
that 3, i.e. is singular. The obvious way to proceed is to solve the equation
det(Cx) = 0 for x. Clearly, row operations aren’t going to be of much
help in finding det(Cx), so we will use Laplace, as in the previous example.
Expanding along the first column gives

det(Cx) = (1− x)
(
(1− x)(2− x)− (−1)(−1)

)
− 2
(
2(2− x)− 0(−1)

)
= −x3 + 4x− 7

Hence Cx is singular at the three complex roots of x3 − 4x+ 7 = 0.
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Remark: In many algebra texts, the determinant is actually defined induc-
tively via the Laplace expansion. The problem with this approach is that in
order to do this rigorously, one has to show all possible Laplace expansions
have the same value. There is no simple way to do this, so it is usually taken
for granted. All that the Laplace expansion does is systematically organize
the terms of the determinant. In general, the Laplace expansion isn’t even
in the same ballpark as row operations as an efficient way of computing
det(A). Using Laplace to evaluate even a 20×20 determinant is impractical
except possibly for a super computer (note 20! = 2432902008176640000).
Yet in fairly mundane applications of linear algebra to biotechnology, one
might need to evaluate a 2000 × 2000 determinant. Calculations involv-
ing genomes routinely require evaluating much larger determinants. On the
other hand, the Laplace expansion is convenient for matrices which have
very few nonzero entries.

8.3.2 The Case of Equal Rows

We still need to finish the proof of assertion Det III Theorem 8.10. Recall
that this requires we establish

Proposition 8.18. Suppose F is a field of arbitrary characteristic and n >
1. Then if C ∈ Fn×n has two equal rows or two equal columns, then det(C) =
0.

Proof. Since det(A) = det(AT ) (Proposition 8.16), it suffices to stick to the
case of equal rows. Recall that we used a row switching argument in the
proof of Theorem 8.10 to prove the special case where the characteristic of F
is different from two. Suppose in general that two rows of A are equal, where
A ∈ Fn×n and n > 1. If n = 2, the result is clear by the explicit formula
for det(A). The strategy will be to use induction and Laplace together. So
assume that the result is true for all A ∈ Fm×m, where 2 ≤ m ≤ n− 1, and
let A ∈ Fn×n have the same the ith and jth rows. We may in fact suppose,
without any loss of generality, that i, j 6= 1 (why?). That being the case,
apply the Laplace expansion along the first row. We then see that det(A) is
a sum of (n− 1)× (n− 1) determinants, each of which has two equal rows.
By the inductive hypothesis, each of these (n−1)×(n−1) determinants is 0.
Therefore det(A) = 0 too. This completes the induction, so the Proposition
is established.
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8.3.3 Cramer’s Rule

Another reason the Laplace expansion is important, at least from a theoret-
ical point of view, is that it gives a closed formula known as Cramer’s Rule
for the inverse of a matrix. Recall that if A is 2× 2,

A−1 =
1

det(A)

(
a22 −a12

−a21 a11

)
.

Inspecting this formula may suggest the correct formula for A−1 in the
general case.

Definition 8.3. Suppose A ∈ Fn×n, and let Aij denote the (n−1)× (n−1)
submatrix of A obtained by deleting A’s ith row and jth column. Then the
matrix

Cof(A) =
(
(−1)i+j det(Aji)

)
(8.17)

is called the cofactor of A.

Proposition 8.19. Suppose A ∈ Fn×n. Then Cof(A)A = det(A)In. Thus,
if det(A) 6= 0, then

A−1 =
1

det(A)
Cof(A).

Proof. The essential ideas are all contained in the 3×3 case, so, for simplicity,
let n = 3. By definition,

Cof(A) =

 det(A11) −det(A21) det(A31)
−det(A12) det(A22) −det(A23)
det(A13) −det(A23) det(A33)

 .

Put

C =

 det(A11) −det(A21) det(A31)
−det(A12) det(A22) −det(A23)
det(A13) −det(A23) det(A33)

a11 a12 a13

a21 a22 a23

a31 a32 a33

 .

We have to show that C = det(A)In. But it follows immediately from The-
orem 8.17 that each diagonal entry of C is det(A). On the other hand,
consider one of C’s off diagonal entries, say c21. Expanding the above prod-
uct gives

c21 = −a11 det(A12) + a21 det(A22)− a31 det(A32).
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But this is exactly the Laplace expansion along the first column for the
determinant of the matrix

−

a11 a11 a13

a21 a21 a23

a31 a31 a33

 .

The determinant of this matrix is 0, since it has two equal columns. Thus
c21 = 0 by Proposition 8.18. Using similar reasoning on the other cij with
i 6= j, we get Cof(A)A = det(A)I3, which is the first claim. If det(A) 6= 0,
dividing by Cof(A) by det(A) gives a left inverse of A, hence A−1 (by Section
3.3), so the proof is complete.

8.3.4 The Inverse of a Matrix Over Z

Most of the matrices we’ve inverted have integral entries. By Proposition
8.19, these inverses have rational entries. But we also know that some of
these inverses have integral entries, namely those where det(A) = ±1. The
question is whether these are all. The answer is given by

Proposition 8.20. Suppose A is an invertible matrix with integral entries.
Then A−1 also has integral entries if and only if det(A) = ±1.

Proof. We just proved the if statement. Conversely, suppose A−1 is in-
tegral. Then det(A) and det(A−1) both are integers. But det(AA−1) =
det(A) det(A−1) = det(In) = 1, so the only possibility is that det(A) =
det(A−1) = ±1.

A somewhat deeper fact is the following result.

Proposition 8.21. An n× n matrix over Z is invertible over Z if and only
if it can be expressed as a product of elementary matrices all of which are
over Z.

We will skip the proof. Of course, row swap matrices are always integral.
The restriction of sticking to elementary matrices over Z means that one can
only multiply a row by ±1 and replace it by itelf plus an integral multiple
of another row.

8.3.5 A Characterization of the Determinant

Although it’s a little tedious to write out all the details, one can infer directly
from the definition that det(A) is an F-linear function of the rows of A.
That is, if all but one of the rows of A fixed, then the determinant is a linear
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function of the remaining row. Now we can ask: is the determinant the only
such function? This is answered by
Theorem 8.22. The only function F : Fn×n → F satisfying:

(1) F is F-linear in each row,

(2) F (A) = 0 if two rows of A are equal, and

(3) F (In) = 1

is the determinant function F (A) = det(A).

Proof. In fact, these conditions tell us that for any elementary matrix E,
F (EA) is computed from F (A) in exactly the same way det(EA) is com-
puted from det(A). We will omit the details.

8.3.6 The determinant of a linear transformation

The product theorem enables us to define the determinant of a linear trans-
formation T : V → V , provided V is finite dimensional. The definition goes
as follows.

Definition 8.4. The determinant det(T ) of T is defined to be det(A), where
A ∈ Fn×n is the matrix representation of T with respect to some basis of V .

We need to check that det(T ) is well defined. That is, we have to check
the if B is another matrix representation of T , then det(A) = det(B). But
Proposition 7.13 says that if A and B are matrices of T with respect to
different bases, then A and B are similar, i.e. there exists an invertible
P ∈ Fn×n such that B = PAP−1. Thus

det(B) = det(PAP−1) = det(P ) det(A) det(P−1) = det(A),

so det(T ) is indeed well defined.
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Exercises

Exercise 8.17. Find all values x ∈ R for which

A(x) =

1 x 2
x 1 x
2 3 1


is singular, that is, not invertible.

Exercise 8.18. Repeat the previous exercise for the matrix

B(x) =


1 x 1 x
1 0 x 1
0 x 1 1
1 0 1 0

 .

(Suggestion: use the Laplace expansion to evaluate.)

Exercise 8.19. Recall the cross product mapping Ca : R3 → R3 given by
Ca(x) = a× x. Find det(Ca).

Exercise 8.20. Why does condition (2) in Theorem 8.22 imply that the
determinant changes sign under a row swap?
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8.4 Geometric Applications of the Determinant

Now let us mention some of the geometric applications of determinants.

8.4.1 Cross and Vector Products

The cross product x×y of two vectors x, y ∈ R3 is defined by the following
rule:

x× y = det

e1 e2 e3

x1 x2 x3

y1 y2 y3

 .

It is linear in each variable and has the nice property that x×y is orthogonal
to both x and y. In fact,

x× y = |x||y| sin θz,

where z is the unit vector such that det
(
x y z

)
> 0. When this determi-

nant is positive, we call (x,y, z) a right handed triple.
There is an n dimensional generalization of the cross product called the

vector product, which assigns to any (n− 1) vectors x1,x2, . . . ,xn−1 ∈ Rn a
vector

[x1,x2, . . . ,xn−1] ∈ Rn

orthogonal to each of the xi. The vector product is defined by the following
determinantal expression:

[x1,x2, . . . ,xn−1] = det



e1 e2 . . . en
x11 x12 . . . x1n

· ·
· ·
· ·

xn−1,1 xn−1,2 . . . xn−1,n

 .

The fact that

xi · [x1,x2, . . . ,xn−1] = 0

for each i, 1 ≤ i ≤ n − 1, is due to the fact that a determinant with two
equal rows is 0.
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8.4.2 Determinants and Volumes

The absolute value of a real determinant has an interesting geometric inter-
pretation. Note that a basis w1, . . . , wn of Rn spans an n-dimensional
solid parallelogram < w1, . . . , wn >. By definition

< w1, . . . , wn >= {
n∑
i=1

tiwi | 0 ≤ ti ≤ 1}.

It can be shown that the volume of < w1, . . . , wn > is given by the
formula

Vol(< w1, . . . , wn >) = |det
(
w1 w2 · · · wn

)
|.

To connect this with matrices, consider the linear transformation of T :
Rn → Rn such that T (ei) = wi. In other words, the ith column of the
matrix of T is wi. Thus |det(T )| is the volume of the image under T of the
unit cube spanned by the standard basis; i.e.

|det(T )| = Vol(< w1, . . . , wn >).

Hence the linear transformation associated to a real matrix having determi-
nant of absolute value 1 preserves the volume of a cube, although the image
is certainly not necessarily a cube. A linear transformation T : Rn → Rn

of determinant 1 is said to be unimodular. We say that the matrix of T is
unimodular. The set of all unimodular real n × n matrices is denoted by
SL(n,R) and called the special linear group.
Proposition 8.23. Products and inverses of unimodular real matrices are
also unimodular, and In is unimodular. Hence, SL(n,R) is a matrix group.

Unimodular matrices preserve volumes. Indeed, if w1, . . . , wn is a
basis of Rn, S is unimodular and T is the linear transformation defined in
the previous paragraph, we have

Vol(< S(w1), . . . , S(wn) >) = Vol(< ST (e1), . . . , ST (en) >)
= |det(ST )|
= |det(S) det(T )|
= |det(T )|
= Vol(< w1, . . . , wn >).

Using the above argument, one gets a geometric proof of the abolute
product formula: for any A,B ∈ Rn×n,

|det(AB)| = |det(A)||det(B)|.
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This is of course weaker than the product formula itself.

8.4.3 Lewis Carroll’s identity

Here’s an obvious question. Why doesn’t the formula for a 2 × 2 determi-
nant work in some form in the n × n case? This question was answered
by a professor of mathematics at Oxford University named Charles Dodg-
son, better known as Lewis Carroll, the author of Alice in Wonderland and
Through the Looking Glass. Dodgson discoverered and published a proof
of the following amusing identity. Given an n × n matrix A, where n > 2,
let AC be the (n − 2) × (n − 2) submatrix in the middle of A obtained by
deleting the first and last rows and the first and last columns. If n = 2,
we will define det(AC) = 1. Also, let ANW , ANE , ASW and ASE be the
(n − 1) × (n − 1) submatrices of A in the upper left corner, upper right
corner, lower left corner and lower right corner respectively.

Lewis Carroll’s Identity says:

det(A) det(AC) = det(ANW ) det(ASE)− det(ANE) det(ASW ) (8.18)

(see C.L. Dodgson, Proc. Royal Soc. London 17, 555-560 (1860)). Interest-
ingly, Lewis Carroll’s Identity has recently reappeared in the modern setting
of semi-simple Lie algebras. The reader is encouraged to try some examples,
and to give a proof in the 3× 3 case.
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Exercises

Exercise 8.21. Verify Lewis Carroll’s Identity for the matrix
1 2 −1 0
2 1 1 1
0 −1 2 0
1 1 −1 1

 .

Exercise 8.22. Under what condition does Lewis Carroll’s Identity make
it possible to evaluate det(A)?

Exercise 8.23. Prove Lewis Carroll’s Identity in the 3× 3 case.

Exercise 8.24. Suppose A and B are n × n matrices over R. Verify the
absolute product formula using the discussion of volumes. That is, show

|det(AB)| = |det(A)||det(B)|.

Exercise 8.25. Determine which the 3 × 3 permutation matrices that lie
in SL(3,R).

Exercise 8.26. Prove Proposition 8.23.

Exercise 8.27. Prove that SL(3,R) is a subgroup of GL(3,R). (Recall
GL(n,R) = {A ∈ Rn×n | det(A) 6= 0}.)

Exercise 8.28. * If G and H are groups, then a mapping ϕ : G → H is
called a group homomorphism if for any a, b ∈ G, ϕ(ab) = ϕ(a)ϕ(b). Explain
how the determinant can be viewed as a group homomorphism if we choose
the group G to be GL(n,F), where F is any field.

Exercise 8.29. Show that the mapping sending σ ∈ S(n) to Pσ ∈ P (n) is
a bijective group homomorphism.
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8.5 A Concise Summary of Determinants

Let F be a field. The determinant is a function det : Fn×n → F with the
following properties:

(1) det(AB) = det(A) det(B), and

(2) det(In) = 1.

Furthermore, if E is an elementary matrix, then:

(3) det(E) = −1 if E is obtained by swapping two rows of In;

(4) det(E) = r if E is obtained by multiplying some row of In by r; and

(5) det(E) = 1 if E is obtained by adding a multiple of some row of In
to another row.

The following properties of det(A) are consequences of (1) through (5).

(6) det
(
a b
c d

)
= ad− bc.

(7) det(A) 6= 0 if and only if A is invertible.

(8) det(AT ) = det(A).

(9) If A is upper triangular, then det(A) = a11 · · · ann. That is, det(A)
is the product of the diagonal entries of A.
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8.6 Summary

Determinants have a long history in mathematics because they give an ex-
plicit expression for the solution of a nonsingular system of n equations in n
variables. (This is known as Cramer’s Rule.) They seem to have first been
defined by Liebniz in the 2 × 2 case. Matrices themselves didn’t explicitly
appear until the 19-th century. The definition of the determinant consid-
ered here is a certain sum of terms, each one associated to an element of
the symmetric group. Hence the definition of the determinant requires some
preliminary facts about the symetric group: namely, the definition of the
signature of a permutation.

If A ∈ Fn×n, then det(A) is an element of F such that det(AB) =
det(A) det(B) for all B ∈ Fn×n, det(In) = 1 and det(A) 6= 0 if and only
if A is invertible. All the properties of determinants are rigorously proved
without too much effort. The main problem is to understand how the de-
terminant changes with the application of a row operation. In fact, modern
computers find determinants via row operations, never by applying the def-
inition. As an application, we derive the various Laplace expansions of
det(A).

The determinant of a linear transformation T : V → V is also defined, as
long as V is finite dimensional: det(T ) is just the determinant any matrix
representing T . In addition to its importance in algebra, which is amply
demonstrated in eigentheory, the determinant also has many geometric ap-
plications. These stem from the fact that |det(A)| is the n-dimensional
volume of the solid spanned by Ae1, Ae2, . . . , Aen. This is the reason the
determinant appears in the change of variables theorem for multiple inte-
grals, which one studies in vector analysis.
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Eigentheory

Consider a linear transformation T : V → V , where V is a finite dimensional
vector space over a field F. We know from Chapter 7 that one can study
T from the standpoint of matrix theory by choosing a basis B of V and
replacing T by the n × n matrix MB

B(T ) over F, where n = dimV . The
nicest case is when T is semi-simple. That is, that there exists an eigenbasis
B of V . This is due to the fact that B is an eigenbasis if and only if MB

B(T )
is a diagonal matrix. Thus, T is semi-simple if and only if MB

B(T ) is similar
to a diagonal matrix for any basis B of V .

Of course, being able to view T as a matrix allows us to switch from a
geometric concept (the transformation) to an algebraic object (its matrix),
which may be easier to work with. For example, diagonal matrices are very
easy to manipulate, since they commute with each other and their powers
are easy to calculate. Hence, semi-simple operators are by far the easiest
to work with. Thus, one of our fundamental goals in this Chapter is to
determine when a matrix is diagonalizable, that is, similar to a diagonal
matrix. The first step is to develop the tools for finding the eigenpairs for
T . Along the way, we will give some examples of how eigentheory is used.
The culmination of all this will be the Principal Axis Theorem(Chapter 11)
and the Jordan Decomposition Theorem (Chapter 13).

9.1 Dynamical Systems

The purpose of this section is to give some motivation and an overview of
the eigenvalue problem for a linear transformation. We will consider the
dynamical system associated to a matrix A, and see how to to describe such
a system by diagonalizing A. Eigentheory is the tool which enables one to
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do this. Along the way, we will introduce several ideas and terms to be
formally defined in the next section.

9.1.1 The Fibonacci Sequence

To illustrate, we consider the Fibonacci sequence. Let (ak) denote the se-
quence defined by the putting ak = ak−1 + ak−2 if k ≥ 2, starting with
two arbitrary integers a0 and a1. The Fibonacci sequence can be expressed
recursively as a matrix identity(

ak+1

ak

)
=
(

1 1
1 0

)(
ak
ak−1

)
where k ≥ 1. Hence putting

F =
(

1 1
1 0

)
,

we see that(
ak+1

ak

)
= F

(
ak
ak−1

)
= F 2

(
ak−1

ak−2

)
= · · · = F k

(
a1

a0

)
.

Letting

v0 =
(
a1

a0

)
and vk =

(
ak+1

ak

)
,

we can therefore express the Fibonacci sequence in the form vk = F kv0.
This is an example of a dynamical system. Suppose in general that

A ∈ Rn×n, and fix an arbitrary vector v0 ∈ Rn. Then the dynamical system
associated to A having initial value v0 is the sequence (vk) with

vk = Avk−1, k = 1, 2, . . .

This sequence is easy to analyze ifA is diagonal, sayA = diag(d1, d2, . . . , dn).
Indeed, A’s Nth power AN is just the diagonal matrix

AN = diag(dN1 , d
N
2 , . . . , d

N
n ).

Thus, if v0 = (v1, v2, . . . , vn)T , then

vN = ((d1)Nv1, (d2)Nv2, . . . , (dn)Nvn)T .

Fortunately, this isn’t the only situation where we can compute AN .
Suppose v ∈ Rn is nonzero and satisfies the condition Av = λv for some
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scalar λ ∈ R. Thus (λ,v) is an eigenpair for A (see Example 7.3). Using
this eigenpair, we get that

ANv = AN−1(Av) = AN−1(λv) = λAN−1v.

By iterating, we obtain
ANv = λNv, (9.1)

for all N > 0. Thus we completely know how the system behaves for any
eigenpair (λ,v).

Now suppose A admits an eigenbasis. That is, there exists a basis
v1,v2, . . .vn of Fn such that Avi = λivi for 1 ≤ i ≤ n. Writing an ar-
bitrary v ∈ Fn as v = a1v1 + a2v2 + · · ·+ anvn, it follows that

Av =
∑

aiAvi =
∑

aiλvi.

But by (9.1), an eigenbasis for A is also one for AN . Hence,

ANv =
∑

aiA
Nvi =

∑
aiλ

Nvi. (9.2)

The key to understanding a dynamical system with arbitrary initial value
v0 is therefore to find an eigenbasis for A, expand v0 in terms of this basis
and apply (9.2).

9.1.2 The Eigenvalue Problem

Let A be a square matrix over the field F, i.e. A ∈ Fn×n. Suppose we want
to find all eigenpairs (λ,v) for A with λ ∈ F. Now in the equation Av = λv,
the variables are λ and the components of v, so the right hand side is a
nonlinear equation. But by slightly reformulating the problem, we can see
what we need to do more clearly. The equation Av = λv is equivalent to

(A− λIn)v = 0. (9.3)

This is a homogeneous linear system which has a nontrivial solution if and
only if A− λIn has a nontrivial null space, which is the case if and only if

det(A− λIn) = 0. (9.4)

This equation is called the characteristic equation of A. Thus λ ∈ F belongs
to an eigenpair (λ,v) with v ∈ Fn if and only if λ is a root of det(A−λIn) =
0. Thus the nonlinear part of the eigenvalue problem is to find the roots
in F of the characteristic polynomial det(A − λIn). Once we have a λ ∈ F
satisfying (9.4), the second problem is the straightforward linear problem of
finding the null space N (A− λIn).
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Example 9.1. Let’s consider the real matrix

A =
(

1 2
2 1

)
.

The eigenvalues of A are the real numbers λ such that

A− λI2 =
(

1− λ 2
2 1− λ

)
has rank 0 or 1. We therefore seek the λ ∈ R such that det(A − λI2) = 0.
Now

det(A− λI2) = (1− λ)2 − 2 · 2 = λ2 − 2λ− 3 = 0.

Since λ2 − 2λ− 3 = (λ− 3)(λ+ 1), the eigenvalues of A are 3 and -1, both
real. We can now proceed to finding corresponding eigenvectors by finding
the null spaces N (A− 3I2) and N (A+ I2). Clearly,

N (A− 3I2) = N (
(
−2 2
2 −2

)
) = R

(
1
1

)
,

and

N (A+ I2) = N (
(

2 2
2 2

)
) = R

(
1
−1

)
.

A consequence of this calculation is that everything combines into a single
matrix equation(

1 2
2 1

)(
1 1
1 −1

)
=
(

3 −1
3 1

)
=
(

1 1
1 −1

)(
3 0
0 −1

)
.

This says AP = PD. But since the columns of P are independent (by
inspection), P is invertible, and we get the factorization A = PDP−1. At
this point, we say A has been diagonalized.

Obtaining a factorization A = PDP−1 is the key to the problem of
computing the powers AN of A. For example,

A2 = (PDP−1)(PDP−1) = PDI2DP
−1 = PD2P−1,

and, generalizing this to any positive integer N ,

AN = PDNP−1.

In the above examples, we solved the diagonalization problem. That is,
given A we constructed a matrix P such that A = PDP−1. Recall from
Definition 7.4 that two matrices A and B in Fn×n are said to be similar
if there exists an invertible M ∈ Fn×n so that B = MAM−1. Thus the
diagonalization problem for A is to find a diagonal matrix similar to A.
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9.1.3 Fibonacci Revisted

Let us now find the Fibonacci sequence. The characteristic equation of F is
λ2 − λ+ 1 = 0, so its eigenvalues are

φ =
1 +

√
5

2
, µ =

1−
√

5
2

.

One checks thatN (F−φI2) = R
(
φ
1

)
, andN (F−µI2) = R

(
µ
1

)
. Therefore,

F =
(
φ µ
1 1

)(
φ 0
0 µ

)(
φ µ
1 1

)−1

.

Hence (
am+1

am

)
= Fm

(
a1

a0

)
=
(
φ µ
1 1

)(
φm 0
0 µm

)(
φ µ
1 1

)−1(
a1

a0

)
.

To take a special case, let a0 = 0 and a1 = 1. Then this leaves us with the
identity

am =
φm − µm

φ− µ
=

1√
5 · 2m

((1 +
√

5)m − (1−
√

5)m). (9.5)

Thus

lim
m→∞

am+1

am
= lim

m→∞

φm+1 − µm+1

φm − µm
= φ,

since limm→∞(µ/φ)m = 0. Therefore, for large m, the ratio am+1/am is
approximately φ. Some further computation gives the precise formulas

a2m =
[
φ2m

√
5

]
and a2m+1 =

[
φ2m+1

√
5

]
+ 1,

where [r] denotes the integer part of the real number r.

9.1.4 An Infinite Dimensional Example

Now suppose that V is an arbitrary vector space over R and T : V → V is
a linear transformation. In the infinite dimensional setting, it is customary
to call a linear transformation a linear operator. The eigenvalue problem
for T is still the same: to find scalars λ ∈ R so that there exists a non zero
v ∈ V such that T (v) = λv. However, since V is not assumed to be finite di-
mensional, the above method for solving the characteristic equation doesn’t
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work. An alternate procedure is to look for finite dimensional subspaces W
of V so that T (W ) ⊂ W . But in the infinite dimensional setting, there is
in general no simple technique for finding eigenvalues. This has lead to the
development of much more sophisticated techniques.

In the following example, we consider a linear operator which arises in
differential equations.

Example 9.2. Let V = C∞(R) be the space of real-valued functions on R
which have derivatives of all orders. Since the derivative of such a function
also has derivatives of all orders, differentiation defines a linear operator
D : C∞(R) → C∞(R). That is, D(f) = f ′. It is clear that the exponential
function f(x) = erx is an eigenvector of D with corresponding eigenvalue
r. Thus (r, erx) is an eigenpair for D. In this context, eigenvectors are
usually called eigenfunctions. Considering D2 instead of D, we easily see
that for any integers m and n, cosmx and sinnx are also eigenfunctions
with corresponding eigenvalues −m2 and −n2 respectively.

This is a fundamental example, and we will return to it in Chapter 11.
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9.2 Eigentheory: the Basic Definitions

We will now begin to study eigentheory in earnest. A few of the definitions
made in the previous informal section will be repeated here.

9.2.1 Eigenpairs for Linear Transformations and Matrices

Let F be a field, and suppose V is a finite dimensional vector space over F.

Definition 9.1. Suppose T : V → V is a linear map. Then a pair (λ,v),
where λ ∈ F and v ∈ V , is called an eigenpair for T if v 6= 0 and

T (v) = λv. (9.6)

If (λ,v) is an eigenpair for T , we call λ an F-eigenvalue, or, simply, an
eigenvalue of T and v an eigenvector of T corresponding to λ. An eigenpair
for an n×nmatrixA ∈ Fn×n is just an eigenpair for the linear transformation
TA : Fn → Fn.

Thus, (λ,v) is an eigenpair for A if and only if λ ∈ F, v ∈ Fn is nonzero
and Av = λv. The following Proposition gives some basic general facts
about eigenpairs for A. The reader can easily reformulate them for linear
transformations.
Proposition 9.1. Suppose A is a square matrix over F and (λ,v) is an
eigenpair for A. Then for any scalar r ∈ F, (rλ,v) is an eigenpair for rA.
Moreover, for any positive integer k, (λk,v) is an eigenpair for Ak. Finally,
A has an eigenpair of the form (0,v) if and only if the null space N (A) is
nontrivial.

Proof. The proof is left as an exercise.

9.2.2 The Characteristic Polynomial

To attack the general eigenpair problem for a linear transformation T : V →
V , we will first concentrate on the case where V = Fn and T is a matrix
linear transformation. The next definition is motivated by the approach we
used in Section 9.1.2.

Definition 9.2. Given A ∈ Fn×n, we call pA(λ) = det(A−λIn) the charac-
teristic polynomial of A. The characteristic equation of A ∈ Fn×n is defined
to be the equation pA(λ) = 0.

In order to show that the definition makes sense, we should in fact show
that det(A− λIn) is a polynomial. We now do this and somewhat more.
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Proposition 9.2. If A ∈ Fn×n, the function pA(λ) = det(A − λIn) is a
polynomial of degree n in λ having its coefficients F. Its leading term is
(−1)nλn and its constant term is det(A). The F-eigenvalues of A are the
roots of pA(λ) = 0 in F.

Proof. The first two statements are more or less obvious consequences of
the definition of the determinant. For the third, note that λ ∈ F is a root
of det(A − λIn) = 0 if and only if there exists a nonzero x ∈ Fn such that
(A− λIn)x = 0.

We will see in the examples below that sometimes not every root of
pA(λ) = 0 lies in the field F over which A is defined. Nevertheless, it is
convenient to refer to all the roots of the characteristic polynomial of A as
eigenvalues of A, even though we may only be interested in the F-eigenvalues.
In fact, there is a theorem in algebra which says that there exists a field
containing F which also contains all the roots of pA(λ). In particular, when
A ∈ Rn×n, the Fundamental Theorem of Algebra (Theorem 4.18) tells us
that the characteristic equation pA(λ) = 0 has n complex roots. Thus A has
n complex eigenvalues. However, only the real roots, which happen to occur
in conjugate pairs, are relevant for A if one is studying A as a real matrix.

Here is an example of a linear transformation on R2, whose matrix is
diagonalizable over C, but not over R.

Example 9.3. The characteristic equation of the matrix

J =
(

0 −1
1 0

)
is λ2 + 1 = 0. Hence J has no real eigenvalues since the roots of λ2 + 1 = 0
are ± i, hence pure imaginary. Of course, it is geometrically obvious J has
no real eigenvalues. In fact, J is the rotation of R2 through π/2, and no
nonzero vector can be rotated through π/2 into a multiple of itself.

Example 9.4. On the other hand, if we think of J as a 2×2 complex matrix,
it has complex eigenvalues ± i, illustrating why the term F-eigenvalues is

useful. Solving for the corresponding eigenvectors gives eigenpairs (i,
(

1
−i

)
)

and (−i,
(

1
i

)
). Notice that the eigenpairs are conjugate in an obvious sense.

This is because the matrix J is real.
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Example 9.5. If A =
(

1 2
2 −1

)
, then A − λI2 =

(
1−λ 2
−2 −1−λ

)
, so the charac-

teristic polynomial of A is |A − λI2| = (1 − λ)(−1 − λ) − (2)(2) = λ2 − 5.
The eigenvalues of A are ±

√
5. Both eigenvalues are real.

Example 9.6. Let K =
(

0 −i
i 0

)
. The characteristic polynomial of K is

λ2 − 1, so the eigenvalues of K are ± 1. Thus K is a complex matrix that
has real eigenvalues. Notice that K = iJ , where J is the rotation through
π/2, so Proposition 9.1 in fact tells us that its eigenvalues are i times those
of J .

Example 9.7 (Triangular Matrices). Suppose U = (uij) ∈ Fn×n is upper
triangular. Then

pU (λ) = (u11 − λ)(u22 − λ) · · · (unn − λ).

Hence the eigenvalues of an upper triangular matrix are its diagonal entries.
A similar remark holds for lower triangular matrices. We will show below
that every A ∈ Cn×n is similar to an upper triangular matrix.

9.2.3 Further Remarks on Linear Transformations

So far we haven’t looked at the relationship between the eigenvalues of a
linear transformation and the eigenvalues of a matrix representing the linear
transformation. The first step in this direction is

Proposition 9.3. Two similar matrices have the same characteristic poly-
nomial.

Proof. Suppose A and B are similar, say B = MAM−1. Then

det(B − λIn) = det(MAM−1 − λIn)
= det(M(A− λIn)M−1)
= det(M) det(A− λIn) det(M−1)

Since det(M−1) = det(M)−1, the proof is done.

This Proposition allows us to extend the definition of the characteristic
polynomial to an arbitrary linear transformation T : V → V , provided V is
finite dimensional. Indeed, suppose B is a basis of V and A = MB

B(T ) is the
matrix of T with respect to this basis.
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Definition 9.3. If V is a finite dimensional vector space over F and T : V →
V is linear, then we define the characteristic polynomial of T to be pT (λ) =
pA(λ). The characteristic equation of T is defined to be the equation pT (λ) =
0 .

We need to show the definition makes sense. But any two matrices
A = MB

B(T ) and A′ = MB′
B′(T ) representing T with respect to to different

bases B and B′ are similar. That is, A′ = PAP−1. Thus, by Proposition 9.3,
pA(λ) = pA′(λ). Hence the characteristic polynomial of T is unambiguously
defined.

We will now show how the eigenpairs for MB
B(T ) are related to the

eigenpairs for T .
Proposition 9.4. Let V be a finite dimensional vector space over F and
suppose T : V → V is linear. Then any root µ ∈ F of the characteristic
polynomial of T is an eigenvalue of T , and conversely.

Proof. Let A = MB
B(T ) where B is the basis given by v1, . . . ,vn of V .

Suppose µ ∈ F is a root of the characteristic equation det(A−µIn) = 0, and
let (µ,x) be an eigenpair for A. Thus Ax = µx. Let x = (x1, . . . , xn)T and
put v =

∑
i xivi. I claim (µ,v) is an eigenpair for T . For

T (v) =
∑
i

xiT (vi)

=
∑
i,j

xiajivj

=
∑
j

µxjvj

= µv

Since some xj 6= 0, it follows that v is non zero, so (µ,v) is indeed an
eigenpair for T . For the converse, just reverse the argument.

The upshot of the previous two Propositions is that the eigentheory of
linear transformations reduces to the eigentheory of matrices.

9.2.4 Formulas for the Characteristic Polynomial

The characteristic polynomial pA(λ) of a 2 × 2 matrix A =
(
a b
c d

)
over an

arbitrary field F has a nice form, which we will explain and then generalize.
First, define the trace of an n×n matrix to be the sum of its diagonal entries.
Thus, in the 2× 2 case above, Tr(A) = a+ d. Note that

pA(λ) = (a− λ)(d− λ)− bc = λ2 − (a+ d)λ+ (ad− bc).
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Hence,
pA(λ) = λ2 + Tr(A)λ+ det(A). (9.7)

The quadratic formula therefore gives the eigenvalues of A in the form

λ =
1
2
(
−Tr(A)±

√
Tr(A)2 − 4 det(A)

)
. (9.8)

Hence if A is real, it has real eigenvalues if and only if the discriminant
∆(A) :=Tr(A)2 − 4 det(A) is non negative: i.e. ∆(A) ≥ 0. If ∆(A) = 0,
the roots are real and repeated. If ∆(A) < 0, the roots are complex and
unequal. In this case, the roots are conjugate complex numbers. That is,
they have the form λ, λ for some λ 6= 0.

By factoring the characteristic polynomial as

(λ− λ1)(λ− λ2) = λ2 − (λ1 + λ2)λ+ λ1λ2

and comparing coefficients, we immediately see that:

(i) the trace of A is the sum of the eigenvalues of A:

Tr(A) = λ1 + λ2,

(ii) the determinant of A is the product of the eigenvalues of A:

det(A) = λ1λ2.

For n > 2, the characteristic polynomial is more difficult to compute,
though it is still true that the trace is the sum of the roots of the characteris-
tic polynomial and the determinant is their product. Using row operations
to compute a characteristic polynomial isn’t very practical (see Example
8.8), so when computing by hand, the only obvious way to proceed is to use
the Laplace expansion.

There’s an important warning that has to be issued here. Whenever
you are computing the characteristic polynomial of a matrix, never
(repeat, never) row reduce the matrix (or even do a single row op-
eration on the matrix) before computing its characteristic polyno-
mial. There is absolutely no reason the characteristic polynomials of A and
EA should be the same. If they were, all invertible matrices would have the
same eigenvalues.

On the other hand, we will now exhibit (without proof) a beautiful
formula for the characteristic polynomial of an arbitrary matrix in the spirit
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of (9.7) involving the so called principal minors of A. Since pA(λ) is a
polynomial in λ of degree n with leading coefficient (−1)nλn and constant
term det(A), we can write

pA(λ) = (−1)nλn + (−1)n−1σ1(A)λn−1 + (−1)n−2σ2(A)λn−2+

+ · · ·+ (−1)1σn−1(A)λ+ det(A), (9.9)

where the σi(A), 1 ≤ i ≤ n− 1, are the remaining coefficients.
Theorem 9.5. The coefficients σi(A) for 1 ≤ i ≤ n are given by

σi(A) :=
∑(

all principal i× i minors of A
)
, (9.10)

where the principal i× i minors of A are defined to be the determinants of
the i × i submatrices of A obtained by deleting (n − i) rows of A and the
same (n− i) columns.

By definition, the principal 1× 1 minors are just the diagonal entries of
A, since deleting all but the ith row and column leaves just the diagonal
entry aii. Hence

σ1(A) = a11 + a22 + · · ·+ ann

so
σ1(A) = Tr(A).

Clearly the constant term σn(A) = det(A). In general, the number of j × j
minors of A is the binomial coefficient(

n
j

)
=

n!
j!(n− j)!

counting the number of subsets with j elements contained in a set with n
elements. Thus, the characteristic polynomial of a 4× 4 matrix will involve
four 1× 1 principal minors, six 2× 2 principal minors, four 3× 3 principal
minors and a single 4× 4 principal minor. Nevertheless, using Theorem 9.5
is by an effective way to expand det(A− λIn). You should even be able to
do the 3× 3 case without pencil and paper (or a calculator).

Example 9.8. For example, let

A =

3 −2 −2
3 −1 −3
1 −2 0

 .
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Then
det(A− λI3) = −λ3 + (−1)2(3− 1 + 0)λ2+

(−1)1(det
(

3 −2
3 −1

)
+ det

(
−1 −3
−2 0

)
+ det

(
3 −2
1 0

)
)λ+ det(A).

Thus the characteristic polynomial of A is

pA(λ) = −λ3 + 2λ2 + λ− 2.

The question of how to find the roots of a characteristic polynomial often
arises, but there is no obvious answer. In the 2 × 2, 3 × 3 and 4 × 4 cases,
there are general formulas, though they aretwo unwieldy to write down here.
But otherwise, there aren’t any general methods for finding the roots of a
polynomial. Solving the eigenvalue problem for a given square matrix is a
problem which is usually approached by other methods, such as Newton’s
method or the QR algorithm, which we will treat in Chapter 12.

For a matrix with integral entries, the rational root test is helpful.
This test says that if

p(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0

is a polynomial with integer coefficients a0, . . . an, then the only possible
rational roots have the form p/q, where p and q are integers without any
common factors, p divides a0 and q divides an. In particular, if the leading
coefficient an = 1, then q = ±1, so the only possible rational roots are the
inegers which divide the constant term a0. Therefore we obtain

Proposition 9.6. If A is a matrix with integer entries, then the only pos-
sible rational eigenvalues of A are the integers dividing det(A).

Since the characteristic polynomial of the matrix A in the previous ex-
ample is −λ3 + 2λ2 + λ − 2 the only possible rational eigenvalues are the
divisors of 2, that is ± 1 and ± 2. Checking these possibilities, we find that
± 1 and 2 are roots, so these are the eigenvalues of A.

Note that the coefficients of pA(λ) are certain explicit functions of its
roots. For if pA(λ) has roots λ1, . . . , λn, then

pA(λ) = (λ1 − λ)(λ1 − λ) . . . (λ1 − λ)
= (−1)n(λ)n + (−1)n−1(λ1 + λ2 + . . . λn)λn−1 + · · ·+ λ1λ2 · · ·λn

Thus we obtain a generalization of what we showed in the 2 × 2 case. For
example, we have



270

Proposition 9.7. The trace of a matrix A is the sum of the roots of its
characteristic polynomial, and similarly, the determinant is the product of
the roots of its characteristic polynomial.

The functions σi(λ1, . . . , λn) expressing the coefficients σi(A) as func-
tions of λ1, . . . , λn are called the elementary symmetric functions . For
example,

σ2(λ1, . . . , λn) =
∑
i<j

λiλj .
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Exercises

Exercise 9.1. Find the characteristic polynomial and real eigenvalues of
the following matrices:

(i) the X-files matrix

X =

1 0 1
0 1 0
1 0 1

 ,

(ii) the checkerboard matrix

C =

0 1 0
1 0 1
0 1 0

 ,

(iii) the 4× 4 X-files matrix
1 0 0 1
0 1 1 0
0 1 1 0
1 0 0 1

 ,

(iv) the 4× 4 checkerboard matrix
1 0 1 0
0 1 0 1
1 0 1 0
0 1 0 1

 .

Exercise 9.2. Find the characteristic polynomial and eigenvalues of
−3 0 −4 −4
0 2 1 1
4 0 5 4
−4 0 −4 −3


in two ways, one using the Laplace expansion and the other using principal
minors.
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Exercise 9.3. The following matrix A appeared on a blackboard in the
movie Good Will Hunting:

A =


0 1 0 1
1 0 2 1
0 2 0 0
1 1 0 0

 .

Find the characteristic polynomial of A and try to decide how many real
eigenvalues A has.

Exercise 9.4. Find the characteristic polynomial of a 4 × 4 matrix A if
you know that three eigenvalues of A are ±1 and 2 and you also know that
det(A) = 6.

Exercise 9.5. Using only the definitions, prove Proposition 9.1.

Exercise 9.6. Suppose A ∈ Fn×n has the property that A = A−1. Show
that if λ is an eigenvalue of A, then so is λ−1.

Exercise 9.7. Show that two similar matrices have the same trace and
determinant.

Exercise 9.8. True or False: Two matrices with the same characteristic
polynomial are similar.

Exercise 9.9. If A is a square matrix, determine whether or not A and AT

have the same characteristic polynomial, hence the same eigenvalues.

Exercise 9.10. Show that 0 is an eigenvalue of A if and only if A is singular,
that is, A−1 does not exist.

Exercise 9.11. True or False: If λ is an eigenvalue of A and µ is an eigen-
value of B, then λ+ µ is an eigenvalue of A+B.

Exercise 9.12. An n×n matrix such that Ak = O for some positive integer
k is called nilpotent.

(a) Show all eigenvalues of a nilpotent matrix A are 0.

(b) Hence conclude that the characteristic polynomial of A is (−1)nλn. In
particular, the trace of a nilpotent matrix is 0.

(c) Find a 3× 3 matrix A so that A2 6= O, but A3 = O. (Hint: look for an
upper triangular example.)
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Exercise 9.13. Find the characteristic polynomial of the 5 × 5 X-Files
matrix 

1 0 0 0 1
0 1 0 1 0
0 0 1 0 0
0 1 0 1 0
1 0 0 0 1

 .

Exercise 9.14. Show that the complex eigenvalues of a real n × n matrix
occur in conjugate pairs λ and λ. (Note: the proof of this we gave for
n = 2 does not extend. First observe that if p(x) is a polynomial with real
coefficients, then p(x) = p(x).)

Exercise 9.15. Conclude from the previous exercise that a real n×nmatrix,
where n is odd, has at least one real eigenvalue. In particular, every 3 × 3
real matrix has a real eigenvalue.

Exercise 9.16. Find eigenpairs for the two eigenvalues of the rotation Rθ
of R2. (Note, the eigenvalues are complex.)

Exercise 9.17. Show that in general, the only possible real eigenvalues of
an n× n real orthogonal matrix are ±1.

Exercise 9.18. Let

J =
(

0 −I2
I2 0

)
.

Show that J cannot have any real eigenvalues, and find all its complex
eigenvalues.

Exercise 9.19. Suppose A is n×n and invertible. Show that for any n×n
matrix B, AB and BA have the same characteristic polynomial.

Exercise 9.20. * Find the characteristic polynomial ofa b c
b c a
c a b

 ,

where a, b, c are all real. (Note that the second matrix in Problem 2 is of
this type. What does the fact that the trace is an eigenvalue say?)

Exercise 9.21. Find the elementary symmetric functions σi(λ1, λ2, λ3, λ4)
for i = 1, 2, 3, 4 by expanding (x− λ1)(x− λ2)(x− λ3)(x− λ4). Deduce an
expression for all σi(A) for an arbitrary 4× 4 matrix A.
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9.3 Eigenvectors and Diagonalizability

Let V be a finite dimensional vector space over the field F. We now begin to
study the fundamental question of when a linear transformation T : V → V
is semi-simple, or, equivalently, when is its matrix diagonalizable. In other
words, we wish to study the question of when V admits a basis consisting
of eigenvectors of T (i.e. an eigenbasis). The purpose of this section is to
give an elementary characterization. A complete answer as to which linear
transformations are semi-simple is given in Chapter 13.

9.3.1 Semi-simple Linear Transformations and Diagonaliz-
ability

Recall that a basis of V consisting of eigenvectors of a linear transformation
T : V → V is called an eigenbasis associated to T . A linear transformation T
which admits an eigenbasis is said to be semi-simple. Similarly, an eigenbasis
for a matrix A ∈ Fn×n is an eigenbasis for the linear transformation TA. A
matrix A ∈ Fn×n is said to be diagonalizable over F if and only if there
exists an invertible matrix P ∈ Fn×n and a diagonal matrix D ∈ Fn×n such
that A = PDP−1.

Recall that we showed in Proposition 7.14 that if A = PDP−1, where
D is diagonal, then the ith diagonal entry λi of D is an eigenvalue of A and
the ith column of P is a corresponding eigenvector. This is easily seen from
first principles. Since A = PDP−1, we have AP = PD. Letting pi denote
the ith column of P , and equating the ith columns of AP and PD, we get
that Api = λipi for each i.

Proposition 9.8. Suppose A ∈ Fn×n and A = PDP−1, where P and
D are also in Fn×n and D is diagonal. Then the columns of P are an
eigenbasis for Fn associated to A. Hence a diagonalizable matrix admits an
eigenbasis. Conversely, a matrix A ∈ Fn×n which admits an eigenbasis for
Fn is diagonalizable. Finally, if B = {p1, . . . ,pn} is an eigenbasis of Fn for
A and P =

(
p1 · · · pn

)
, then the identity A = PDP−1 is equivalent to

saying MB
B(TA) = D.

Proof. The first assertion was just proved. For the converse, let B be a basis
of Fn, and let P be the matrix whose columns are these basis vectors in some
order. Then if Api = λipi, we have AP = PD, so A = PDP−1 since P is
invertible. The last assertion is just a restatement of the definitions.
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9.3.2 Eigenspaces

We now define the eigenspaces of a linear transformation T : V → V .

Definition 9.4. Let λ be an eigenvalue of T . Then the eigenspace of λ
corresponding to λ is the subspace

Eλ = {v ∈ V | T (v) = λv}

of V . In particular, if V = Fn and T = TA for some A ∈ Fn×n, then
Eλ = N (A− λIn). The dimension of Eλ is called the geometric multiplicity
of λ.

Example 9.9. Consider a simple example, say T = TA where

A =
(

1 2
2 1

)
.

Then pA(λ) = λ2−2λ−3 = (λ−3)(λ+1), so the eigenvalues of A are λ = 3
and −1. Now

A− (−1)I2 =
(

2 2
2 2

)
and A− 3I2 =

(
−2 2
2 −2

)
.

Thus E−1 = N (A + I2) = R
(

1
−1

)
and E3 = N (A − 3I2) = R

(
1
1

)
. Thus

we have found an eigenbasis of R2, so A is diagonalizable (over R).

Example 9.10. Here is another calculation. Let

A =

3 −2 −2
3 −1 −3
1 −2 0

 .

Then pA(λ) = −λ3 +2λ2 +λ−2. The eigenvalues of A are ± 1, 2. One finds
that N (A − I3) = R(1, 0, 1)T , N (A + I3) = R(1, 1, 1)T , and N (A − 2I3) =
R(0, 1,−1)T , where Rv is the line spanned by v.

In the above examples, the characteristic polynomial has simple roots.
In general, a polynomial p(x) is said to have simple roots if and only if it
has no linear factors of the form (x− r)2, where r is a scalar. The algebraic
multiplicity of a root r of p(x) = 0 is the largest value k > 0 such that
(x − r)k divides p(x). Clearly a polynomial has simple roots if and only if
each root has algebraic multiplicity one.
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The following result gives a well known criterion for diagonalizability in
terms of simple roots. We will omit the proof, since a more general result is
proven in the next section (see Proposition 9.4).

Proposition 9.9. An n × n matrix A over F with n distinct eigenvalues
in F is diagonalizable. More generally, if V be a finite dimensional vector
space over F and T : V → V is a linear transformation with dimV distinct
eigenvalues in F, then T is semi-simple.

Consider another example.

Example 9.11. The counting matrix

C =

1 2 3
4 5 6
7 8 9


has characteristic polynomial pC(x) = −λ3 + 15λ2 − 21λ, hence eigenvalues
0 and 1

2(15±
√

151). The eigenvalues of C are real and distinct, hence C is
diagonalizable over R.

It is worth mentioning that there exists a well know test for simple roots.
We thus have a criterion for determining whether A has distinct eigenvalues.

Proposition 9.10. A polynomial p(x) has simple roots if and only if the
equations p(x) = 0 and p′(x) = 0 have no root in common. In particular,
a square matrix A has simple eigenvalues exactly when pA(λ) and (pA)′(λ)
have no common roots.

Proof. We leave this as an exercise.

Example 9.12. Recall the Good Will Hunting matrix

A =


0 1 0 1
1 0 2 1
0 2 0 0
1 1 0 0

 .

The characteristic polynomial of A is

pAλ) = λ4 − 7λ2 − 2λ+ 4.

This polynomial has −1 as a root and factors as

(λ+ 1)(λ3 − λ2 − 6λ+ 4).
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To show that p(λ) has four distinct roots, it suffices to show q(λ) = λ3 −
λ2−6λ+4 = 0 has distinct roots since −1 is obviously not a root of q. Now
q′(λ) = 3λ2 − 2λ− 6 which has roots

r =
2±

√
76

6
.

Now

q(
2 +

√
76

6
) < 0,

while

q(
2−

√
76

6
) > 0.

Since the points where q′ = 0 are not zeros of q, q has three distinct roots.
Therefore, pA has simple roots, so A has 4 distinct eigenvalues. Furthermore,
it’s clear that all the roots of q are real, so A is diagonalizable over R.
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Exercises

Exercise 9.22. Diagonalize the following matrices if possible:

A =
(

1 −1
−1 1

)
and B =


−3 0 −4 −4
0 2 1 1
4 0 5 4
−4 0 −4 −3

 .

Exercise 9.23. Diagonalize the three matrices in Exercise 9.1.

Exercise 9.24. Decide whether the Good Will Hunting matrix (cf Exercise
9.3) can be diagonalized.

Exercise 9.25. Suppose A and B are similar and (λ,v) is an eigenpair for
A. Find an eigenpair for B.

Exercise 9.26. Show that if A ∈ Rn×n admits an eigenbasis for Rn, it also
admits an eigenbasis for Cn.

Exercise 9.27. Let A be a real 3× 3 matrix so that A and −A are similar.
Show that

(a) det(A) = Tr(A) = 0,

(b) 0 is an eigenvalue of A, and

(c) if some eigenvalue of A is non-zero, then A is diagonalizable over C.

Exercise 9.28. Find an example of two real matrices which have the same
characteristic polynomial which are not similar.

Exercise 9.29. A 4×4 matrix has eigenvalues ±1, trace 3 and determinant
0. Can A be diagonalized?

Exercise 9.30. Let A be a 3 × 3 matrix whose characteristic polynomial
has the form −x3 + 7x2 − bx + 8. Suppose that the eigenvalues of A are
integers.

(i) Find the eigenvalues of A.

(ii) Find the value of b.

Exercise 9.31. What is the characteristic polynomial of A3 in terms of
that of A?

Exercise 9.32. Prove the test for simple eigenvalues given by Proposition
9.10.
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Exercise 9.33. Diagonalize J =
(

0 1
−1 0

)
. More generally do the same for

Rθ for all θ 6= 0.

Exercise 9.34. Let A =
(
a b
c d

)
be a real matrix such that bc > 0.

(a) Show that A has distinct real eigenvalues.

(b) Show that one eigenvector of A lies in the first quadrant and another in
the second quadrant.

Exercise 9.35. Let V = Rn×n and let T : V → V be the linear map
defined by sending A ∈ V to AT . That is, T(A) = AT . Show that the
only eigenvalues of T are ±1. Show also that T is semi-simple by finding an
eigenbasis of V for T.

Exercise 9.36. We say that two n×n matrices A and B are simultaneously
diagonalizable if they are diagonalized by the same matrixM . Show that two
simultaneously diagonalizable matrices A and B commute (i.e. AB = BA).

Exercise 9.37. This is the converse to Exercise 9.36. Suppose that two n×n
matrices A and B commute. Show that if both A and B are diagonalizable,
then they are simultaneously diagonalizable. That is, they share a common
eigenbasis.

Exercise 9.38. If φ ad µ are the eigenvalues of the Fibonacci matrix F of
Section 9.1.1, show directly that

φm − µm

φ− µ
=

1√
5 · 2m

((1 +
√

5)m − (1−
√

5)m)

is an integer, thus explaining the strange expression in Section 9.1.
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9.4 When is a Matrix Diagonalizable?

In the last section, we noted that a matrix A ∈ Fn×n with n distinct eigen-
values in F is diagonalizable. The purpose of this Section is to sharpen this
result so that we can say exactly which matrices are diagonalizable. We will
also consider examples of nondiagonalizable matrices.

9.4.1 A Characterization

To characterize the diagonalizable matrices, we have to investigate what
happens when a matrix A has repeated eigenvalues. The fact that allows us
to do this is the following generalization of Proposition 9.9.

Proposition 9.11. Suppose A ∈ Fn×n, and let λ1, . . . , λk ∈ F be dis-
tinct eigenvalues of A. Choose an eigenpair (λi,wi) for each λi. Then
w1,w2, . . . ,wk are linearly independent. Moreover, if we choose a set of lin-
early independent eigenvectors in Eλi

for each λi, 1 ≤ i ≤ k, then the union
of these k linearly independent sets of eigenvectors is linearly independent.

Proof. Let W be the subspace of Fn spanned by w1,w2, . . . ,wk. If these
vectors are dependent, let m be the first index such that w1,w2, . . . ,wm

independent, but w1, . . . ,wm,wm+1 are dependent. Then

wm+1 =
m∑
i=1

aiwi. (9.11)

Applying A, we obtain Awm+1 =
∑m

i=1 aiAwi, so

λm+1wm+1 =
m∑
i=1

aiλiwi. (9.12)

Multiplying (9.11) by λm+1 and subtracting (9.12) gives

m∑
i=1

(λm+1 − λi)aiwi = 0.

As w1,w2, . . . ,wm are independent, we infer that (λm+1 − λi)ai = 0 for all
1 ≤ i ≤ m. Since each (λm+1 − λi) 6= 0, all ai = 0, which contradicts the
fact that wm+1 6= 0. Hence, w1,w2, . . . ,wk are independent.

To verify the second assertion, suppose we take a set of linearly indepen-
dent vectors from each Eλi

, and consider a linear combination of all these
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vectors which gives 0. Let vi be the part of this sum which lies in Eλi
.

Hence we have that
k∑
i=1

vi = 0.

It follows from the what we just proved that each vi = 0. Indeed, the first
assertion of our Proposition tells us that the non zero vi are independent,
which would contradict the above identity. Therefore, for every i, the coef-
ficients in the part of the sum involving the independent vectors from Eλi

are all zero. Thus, all coefficients are zero, proving the second claim and
finishing the proof.

We can now characterize the diagonalizable matrices in terms of their
eigenspaces.
Proposition 9.12. Let A be an n × n matrix over F, and suppose that
λ1, . . . , λk are the distinct eigenvalues of A in F. Then A is diagonalizable
if and only if

k∑
i=1

dimEλi
= n. (9.13)

In that case, the union of the bases of the Eλi
is an eigenbasis of Fn, and

we have the direct sum decomposition

Fn =
k⊕
i=1

Eλi
.

Proof. If A is diagonalizable, then there exists an eigenbasis, and (9.13)
holds. By the criterion for a direct sum (Proposition 5.22), we get that
Fn =

⊕k
i=1Eλi

. Conversely, if we have (9.13), then Proposition 9.11 implies
there are n linearly independent eigenvectors. This impies Fn admits an
eigenbasis.

In particular, if an n × n matrix over F has n distinct eigenvalues in
F, then there exist n linearly independent eigenvectors. Thus we get an
eigenbasis of Fn, so we obtain the result on distinct eigenvalues mentioned
in the previous section.

The above result also applies to a linear transformation T : V → V
provided V is finite dimensional. In particular, T is semi-simple if and only
if dimV =

∑k
i=1 dimEλi

, where λ1, . . . , λk are the distinct eigenvalues of
T in F and Eλi

is the eigenspace of T corresponding to λi.
Thus, repeated eigenvalues do not preclude diagonalizability. Here is an

example that is rather fun to analyze.
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Example 9.13. Let B denote the 4× 4 all ones matrix

B =


1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

 .

Now 0 is an eigenvalue of B. In fact, B has rank 1, so E0 = N (B) has di-
mension three. Three independent eigenvectors for 0 are f1 = (−1, 1, 0, 0)T ,
f2 = (−1, 0, 1, 0)T , f3 = (−1, 0, 0, 1)T . Another eigenvalue can be found by
inspection, if we notice a special property of B. Every row of B adds up to
4. Thus, f4 = (1, 1, 1, 1)T is another eigenvector for λ = 4. By Proposition
9.11, we now have four linearly independent eigenvectors, hence an eigenba-
sis. Therefore B is diagonalizable; in fact, B is similar toD = diag(0, 0, 0, 4).
Note that one can also the characteristic polynomial of B by inspection. In
fact, the all principal minors of B are zero save the 1× 1 principal minors.
Hence, pB(λ) = λ4 − 4λ3.

In the above example, the fourth eigenvalue of B was found by noticing
a special property of B. A better way to find λ4 would have been to use
the fact that the trace of a square matrix is the sum of its eigenvalues.
Hence if all but one eigenvalue is known, the final eigenvalue can be found
immediately. In our case, three eigenvalues are 0, hence the fourth must be
the trace, which is 4.

9.4.2 Do Non-diagonalizable Matrices Exist?

We now have a criterion to answer the question of whether there exist non-
diagonalizable matrices. Of course, we have seen that there exist real ma-
trices which aren’t diagonalizable over R since some of their eigenvalues are
complex. But these matrices might all be diagonalizable over C. However,
it turns out that there are matrices for which (9.13) isn’t satisfied. Such
matrices can’t be diagonalizable. In fact, examples are quite easy to find.

Example 9.14. Consider the real 2× 2 matrix

A =
(

0 1
0 0

)
.

Clearly pA(λ) = λ2, so 0 is the only eigenvalue of A. Clearly, E0 = N (A) =
Re1, so E0 has dimension one. Therefore, A cannot have two linearly in-
dependent eigenvectors hence cannot be diagonalized over R. For the same
reason, it can’t be diagonalized over C either.
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Another way of seeing A isn’t diagonalizable is to suppose it is. Then
A = MDM−1 for some invertible M . Since A’s eigenvalues are both 0 and
two similar matrices have he same eigenvalues, D = diag(0, 0). This leads to
the equation A = MDM−1 = O, where O is the zero matrix. But A 6= O.

The above example is an illustration of a nontrivial fact about eigen-
values. Namely, the dimension of the eigenspace of an eigenvalue (i.e. its
geometric multiplicity) is at most the algebraic multiplicity of the eigenvalue.
This is proved in the next Section.

9.4.3 Tridiagonalization of Complex Matrices

We will now show that every complex matrix is similar to an upper triangular
matrix. This is known as tridiagonalization. It is the best general result
available general result about diagonalization which we can prove now and
a precursor to the Jordan Normal Form which will be explained in Chapter
13. The proof of tridiagonalization is a good illustration of the usefulness of
quotient spaces.

Proposition 9.13. Let V = Cn and let T : V → V be a linear trans-
formation, say T = TA where A ∈ Cn×n. Then there exists a basis B =
{v1, . . . ,vn} of V such that for each index j,

T (vj) =
j∑
i=1

bijvi. (9.14)

Consequently, the matrix MB
B(T ) of T with respect to B is upper triangular.

In particular, every A ∈ Cn×n is similar to an upper triangular matrix.

Proof. Let us induct on n. The case n = 1 is trivial, so suppose the Propo-
sition holds for n−1. Since C is algebraically closed, T has an eigenpair, say
(λ,w). Let W = Cw be the line in V spanned by w. Now consider the quo-
tient space V/W . We know from Theorem 5.27 that dim(V/W ) = n−1, and,
as shown the proof of this result, if v1, . . . ,vn is a basis of V with vn = w,
then the cosets v1 +W, . . . ,vn−1 +W form a basis of V/W . Now define a
linear transformation T1 : V/W → V/W by putting T1(vi+W ) = T (vi)+W
for i = 1, . . . , n− 1. These values uniquely define T1 and since T (W ) ⊂W ,
it is easy to see from the definition of the vector space structure of V/W
and the fact that T is linear that T1(v + W ) = T (v) + W for all v ∈ V .
By the inductive assumption, there exists a basis w1, . . . ,wn−1 of V/W on
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which (9.14) holds, say

T1(wj) =
j∑
i=1

cijwi.

Letting wi ∈ V be chosen so that wi = wi +W , we see from this identity
that T (w1)− c11w1 ∈W , T (w2)− c12w1− c22w2 ∈W and so on. Hence, if
we put v1 = w,v2 = w1, . . . ,vn = wn−1, then (9.14) is clearly satisfied. It
remains to show that v1, . . . ,vn are independent, hence a basis of V . This
is left to the reader.

The existence of a flag basis in fact holds for any linear transformation
T : V → V, provided V is defined over an arbitrary algebraically closed field,
since the only property of C we used in the proof is that the characteristic
polynomial of T has dimV complex roots. If V = Rn, then the same proof
works for a linear transformation T all of whose eigenvalues are real. In
particular, every A ∈ Rn×n such that all the eigenvalues of A are real is
similar over the reals to an upper triangular matrix. That is, there exists
an invertible P and a diagonal D, both in Rn×n, such that A = PDP−1.

Of course, the eigenvalues of T are the coefficients bii on the diagonal
in (9.14). The above argument shows that the eigenvalues of T1 are exactly
the eigenvalues of T except for λ (though λ may still be an eigenvalue of
T1). A basis such that (9.14) holds is called a flag basis of V for T . Scur’s
Theorem, which is proved in Chapter 11 gives a proof that every complex
matrix is tridiagonalizable without using the notion of a quotient space.
Schur’s Theorem also proves more: namely that the flag basis can be chosen
to be orthonormal.

By a similar, but more complicated argument, it can also be shown
that two commuting complex matrices can be simultaneously diagonalized.
Moreover, if both matrices are also diagonalizable, then they can be simulta-
neously diagonalized. Of course, two simultaneously diagonalizable matrices
A = PDP−1 and A′ = PD′P−1 matrices commute since DD′ = D′D.

We will now prove

Proposition 9.14. For any complex matrix, the geometric multiplicity of
an eigenvalue is at most the algebraic multiplicity of the eigenvalue.

Proof. Let A ∈ Cn×n be arbitrary, and let λ be an eigenvalue of A. Since A
can be tridiagonalized and since the eigenvalues of similar matrices have the
same algebraic and geometric multiplicities, it suffices to assume A is upper
triangular. But in this case, the result follows by inspection. For example,
if λ is the only eigenvalue of A, then the rank of A−λIn can take any value
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between 0 and n− 1, so the geometric multiplicity takes any value between
n and 1 since the geometric multiplicity is n− rank(A− λIn).

Here is an example.

Example 9.15. Consider the matrices

A =

2 1 0
0 1 1
0 0 2

 and B =

2 1 1
0 1 1
0 0 2

 .

In A, the geometric multiplicity of the eigenvalue 2 is one, while the algebraic
multiplicity is one. In B, the geometric multiplicity of 2 is two. The matrix
B is diagonalizable, while A is not.

9.4.4 The Cayley-Hamilton Theorem

We conclude this topic with a famous result called the Cayley-Hamilton
Theorem, which gives an important relationship between a matrix and its
characteristic polynomial.
Theorem 9.15. Let A be an n× n matrix over an arbitrary field F. Then
pA(A) = O. That is, A satisfies its own characteristic polynomial.

Note that by pA(A) = O we mean

(−1)nAn + (−1)n−1Tr(A)An−1 + · · ·+ det(A)In = O.

Here we have put A0 = In. For example, the characteristic polynomial of
the matrix J =

(
0 −1
1 0

)
is λ2 + 1. By Cayley-Hamilton, J2 + I2 = O, which

is easy to check directly.
We will give a complete proof of the Cayley-Hamilton Theorem in Chap-

ter 13. Let us outline a proof for the case F = C. The first thing to
notice is that if A is diagonal, say A = diag(d1, . . . , dn), then pA(A) =
diag(p(d1), p(d2), . . . , p(dn)). But the diagonal entries of a diagonal matrix
are the eigenvalues, so in this case, the conclusion pA(A) = O is clear. Now
if A is diagonalizable, say A = MDM−1, then

pA(A) = pA(MDM−1) = MpA(D)M−1 = MOM−1 = O.

Thus we are done if A is diagonalizable. To finish the proof, one can use
limits. If A is any matrix over R or C, one can show there is a sequence of
diagonalizable matrices Ak such that

lim
k→∞

Ak = A.
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Letting pk denote the characteristic polynomial of Ak, we then have

lim
k→∞

pk(Ak) = p(A) = O

since each pk(Ak) = O.
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Exercises

Exercise 9.39. Show that if Q is orthogonal, then its only real eigenvalues
are ±1. Conclude that if Q is diagonalizable (over R), say Q = PDP−1,
then the diagonal entries of D are ±1.

Exercise 9.40. Determine which of the following matrices are diagonaliz-
able over the reals:

(i) A =

 1 0 −1
−1 1 1
2 −1 −2

,

(ii) B =

0 1 1
1 0 1
1 −1 1



(iii) C =

2 −1 1
1 0 1
1 −1 −2

 ,

(iv) D =

0 1 0
1 0 −1
0 1 0

 .

(v) E =

1 2 1
0 3 1
0 0 1

 .

Exercise 9.41. Does

C =

 1 0 −1
−1 1 1
2 −1 −2


have distinct eigenvalues? Is it diagonalizable?

Exercise 9.42. Determine whether or not the following two matrices are
similar:

A =

 1 −1 1
1 3 1
−1 −1 1

 and B =

2 0 0
0 1 1
0 0 2

 .

Exercise 9.43. Show from first principals that if λ and µ are distinct eigen-
values of A, then Eλ ∩ Eµ = {0}.
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Exercise 9.44. Find an example of a non-diagonalizable 3 × 3 matrix A
with real entries which is not upper or lower triangular such that every
eigenvalue of A is 0.

Exercise 9.45. Determine whether or not the following two matrices are
similar:

A =

 1 −1 1
1 3 1
−1 −1 1

 and B =

2 0 0
0 1 1
0 0 2

 .

Exercise 9.46. Exactly two of the following three matrices are similar.
Assuming this, determine which matrix is not similar to the others.:

A =

0 1 0
0 −2 −1
0 2 2

 , B =

 1 1 0
0 −1 1
−1 −1 0

 , C =

1 1 0
0 −1 1
1 1 0

 .

Exercise 9.47. Assume B is a 3× 3 real matrix.

(i) If the rank of B is 2, its trace is 4 and we know that B isn’t diago-
nalizable. What are its eigenvalues?

(ii) Suppose the trace of A is 0, the determinant of A is 0 and the sum
of each row of A is 3. What are the eigenvalues of A?

(iii) Is A of (ii) diagonalizable? Why?

Exercise 9.48. Recall that a square matrix A is called nilpotent if Ak = O
for some integer k > 0.

(i) Show that if A is nilpotent, then all eigenvalues of A are 0.

(ii) Prove that a nonzero nilpotent matrix cannot be diagonalizable.

(iii) Show, conversely, that if all the eigenvalues of A are 0, then A is
nilpotent. (Hint: Consider the characteristic polynomial.)

Exercise 9.49. Show that if an n × n matrix A is nilpotent, then in fact
An = O.

Exercise 9.50. Let A be a 3× 3 matrix with eigenvalues 0,0,1. Show that
A3 = A2.

Exercise 9.51. Let A be a 2× 2 matrix so that A2 + 3A+ 2I2 = O. Show
that −1,−2 are eigenvalues of A.

Exercise 9.52. Suppose A is a 2 × 2 matrix so that A2 + A − 3I2 = O.
Show that A is diagonalizable.
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Exercise 9.53. Let U be an upper triangular matrix over F with distinct
entries on its diagonal. Show that U is diagonalizable.

Exercise 9.54. Suppose that a 3 × 3 matrix A with real entries satisfies
the equation A3 +A2 −A+ 2I3 = O.

(i) Find the eigen-values of A.

(ii) Is A diagonalizable? Explain.

Exercise 9.55. Is the matrix A =

2 0 0
0 1 1
0 0 2

 diagonalizable? What about

B =

1 0 0
0 2 1
0 0 2

?

Exercise 9.56. Let U be an arbitrary upper triangular matrix over F pos-
sibly having repeated diagonal entries. Try to find a condition to guarantee
U is diagonalizable. (Hint: look at Exercise 9.55. Where do the repetitions
on the diagonal occur?)

Exercise 9.57. Give the proof Proposition 9.12.

Exercise 9.58. Prove the Cayley-Hamilton Theorem for all diagonal ma-
trices A by proving that if p(x) is any polynomial, then

p(diag(λ1, λ2, . . . , λn)) = diag(p(λ1), p(λ2), . . . , p(λn)).

Deduce the Cayley-Hamilton Theorem for all diagonalizable matrices from
the above identity.

Exercise 9.59. Prove the Cayley-Hamilton Theorem for upper triangular
matrices, and then deduce the general case from Schur’s Theorem (which
you will have to look up).

Exercise 9.60. There is a deceptively attractive proof of Cayley-Hamilton
that goes as follows. Consider the characteristic equation det(A− λIn) = 0
of A. Since setting λ = A in p(λ) = det(A − λIn) gives det(A − AIn) = 0,
it follows that p(A) = O. Is this really a proof or is there a flaw in the
argument?

Exercise 9.61. Use the Cayley-Hamilton Theorem to deduce that a 2× 2
matrix A is nilpotent if and only if Tr(A) = det(A) = 0. Generalize this
result to 3× 3 matrices.
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Exercise 9.62. * Fill in the details of the proof of the Cayley-Hamilton
Theorem suggested above using sequences. That is, show that any real or
complex matrix is the limit of a sequence of diagonalizable matrices.



291

9.5 The Exponential of a Matrix

We now return to the powers of a square matrix A, expanding on the remarks
in §9.1. We will also define the exponential of a matrix, by extending the
ordinary the exponential function ex to be a function on Rn×n. We could
also deal with complex matrices, but some care must be taken in defining
the derivative of the exponential in the complex case. Thus we will omit it.

9.5.1 Powers of Matrices

Suppose A ∈ Rn×n can be diagonalized, say A = MDM−1. Then we saw
that for any k > 0, Ak = MDkM−1. In particular, we can make a number
of statements.

(1) If A is a diagonalizable real matrix with non negative eigenvalues, then
A has a square root; in fact kth roots of A for all positive integers k
are given by A

1
k = MD

1
kM−1;

(2) If A is diagonalizable and none of the eigenvalues of A are 0, then the
negative powers of A are found from the formula A−k = MD−kM−1.
Here, A−k means (A−1)k.

(3) If all the eigenvalues λ of A satisfy 0 ≤ λ ≤ 1, then limm→∞Am exists,
and if no λ = 1, this limit is O.

We can in general obtain kth roots of a real matrix A as long as A is
diagonalizable. One can’t expect these matrices to be real however. For
example, if A is diagonalizable but has a negative eigenvalue, then A cannot
have any real square roots. However, these comments aren’t valid for non-
diagonalizable matrices.

9.5.2 The Exponential

Let A ∈ Rn×n. The exponential exp(A) of A is defined to be the matrix
obtained by plugging A into the usual exponential series

ex = 1 + x+
1
2!
x2 +

1
3!
x3 + . . . .

Thus the exponential exp(A) of A is given by the infinite series

exp(A) = In +A+
1
2!
A2 +

1
3!
A3 + · · · = In +

∞∑
m=1

1
m!
Am. (9.15)
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It can be shown that for any A, every component in the exponential series for
A converges, a fact we will simply assume. The matrix exponential behaves
just like the ordinary exponential ex in a number of ways, but the identity
e(x+y) = exey no longer always holds. The reason for this is that although
real number multiplication is commutative, matrix multiplication definitely
isn’t. In fact, we have

Proposition 9.16. If AB = BA, then exp(A+B) = exp(A)exp(B).

If A is diagonalizable, then the matter of finding exp(A) is easily settled.
Suppose D = diag(λ1, λ2, . . . , λn). Then exp(D) = diag(eλ1 , . . . , eλn), and
we have

Proposition 9.17. Suppose A is a diagonalizable n × n matrix, say A =
PDP−1, where D = diag(λ1, λ2, . . . , λn). Then

exp(A) = P exp(D)P−1 = Pdiag(eλ1 , . . . , eλn)P−1.

In particular, if v1, . . . ,vn is an eigenbasis of Rn for A, then it is also an
eigenbasis for exp(A), and the eigenvector vi has eigenvalue eλi .

Hence, if w =
∑n

i=1 aivi, then

exp(A)w =
n∑
i=1

aie
λivi.

9.5.3 Uncoupling systems

One of the main applications of the exponential is to solve first order linear
systems of differential equations by uncoupling. A typical application is the
exponential growth problem solved in calculus. Assume a(t) denotes the
amount of a substance at time t that obeys the law a′(t) = ka(t), where k is
a constant. Then a(t) = a0e

kt for all t, where a0 is the initial amount of a.
The general form of this problem is the first order linear system

d
dt

x(t) = Ax(t),

where A ∈ Rn×n and x(t) = (x1(t), . . . , xn(t))T .
The geometric interpretation of this is that x(t) traces out a curve in

Rn, whose velocity vector at every time t is Ax(t). It turns out that to solve
this system, we consider the derivative with respect to t of exp(tA). First,
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notice that by Proposition 9.16, exp((s+ t)A) = exp(sA)exp(tA). Thus

d
dt

exp(tA) = lim
s→0

1
s
(exp((t+ s)A)− exp(tA))

= exp(tA) lim
s→0

1
s
(exp(sA)− In).

It follows from the definition of exp(tA) that

lim
s→0

1
s
(exp(sA)− In) = A,

so we have the (not unexpected) formula

d
dt

exp(tA) = exp(tA)A = Aexp(tA).

This implies that if we set x(t) = exp(tA)v, then

d
dt

x(t) =
d
dt

exp(tA)v = Aexp(tA)v = Ax(t).

Hence x(t) is a solution curve or trajectory of our given first order system.
Since x(0) = v is the initial value of x(t), it follows that the initial value of
the trajectory x(t) can be arbutrarily prescribed, so a solution curve x(t)
can be found passing through any given initial point x(0).

Example 9.16. Consider the system(
x′

y′

)
=
(

2 1
1 2

)(
x
y

)
.

The matrix A =
(

2 1
1 2

)
can be written A = Mdiag(3, 1)M−1, so

exp(tA) = Mexp
(

3t 0
0 t

)
M−1 = M

(
e3t 0
0 et

)
M−1.

Therefore, using the value of M already calculated, our solution to the
system is

x(t) =
(
x(t)
y(t)

)
=

1
2

(
1 1
1 −1

)(
e3t 0
0 et

)(
1 1
1 −1

)(
x(0)
y(0)

)
.

The final expression for x(t) is therefore(
x(t)
y(t)

)
=

1
2

(
e3t + et e3t − et

e3t + et e3t − et

)(
x(0)
y(0)

)
.



294

If the matrix A is nilpotent, then the system x′(t) = Ax(t) is still solved
by exponentiating tA. The only difference is that A is no longer diagonaliz-
able unless A = O. However, since A is nilpotent, Ak = O for some k > 0,
and so the infinite series is actually a finite sum. More generally, if A is an
arbitrary real n× n matrix, it turns out that A is similar to a matrix of the
form D + N , where D is diagonal, N is upper triangular and DN = ND.
But then the exponential of D+N is easily computed from Proposition 9.16.
Namely,

exp(D +N) = exp(D)exp(N).

This factorization A = P (D+N)P−1 is known as the Jordan Decomposition
of A. We will establish the existence of this decomposition in Chapter 13.

Example 9.17. Consider the system(
x′

y′

)
=
(

1 1
0 1

)(
x
y

)
.

Notice that the matrix of the system is already in the D + N form above.
Now

exp(t
(

1 1
0 1

)
) = exp(t

(
1 0
0 1

)
)exp(t

(
0 1
0 0

)
).

Thus

exp(t
(

1 1
0 1

)
) =

(
et 0
0 et

)(
1 t
0 1

)
=
(
et tet

0 et

)
.

Finally, (
x
y

)
=
(
et tet

0 et

)(
x0

y0

)
,

where the point
(
x0

y0

)
gives the initial position of the solution. Therefore

x(t) = x0e
t + y0te

t

y(t) = y0e
t
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Exercises

Exercise 9.63. Find all possible square roots of the following matrices if
any exist: (

2 1
1 2

)
,

(
1 2
2 1

)
,

(
1 −1
1 −1

)
.

Exercise 9.64. Do the same as in Problem 9.63 for the 4×4 all 1’s matrix.

Exercise 9.65. Calculate the exponentials of the matrices of Problem 9.63.
What are the eigenvalues of their exponentials?

Exercise 9.66. Suppose A ∈ Cn×n is diagonalizable. Show that

det(exp(A)) = eTr(A),

and conclude that det(exp(A)) > 0 for any diagonalizable A ∈ Rn×n.

Exercise 9.67. Verify that exp(A + B) = exp(A)exp(B) if A and B are
diagonal matrices. Use this formula to find the inverse of exp(A) for any
square matrix A over R.

Exercise 9.68. Recall that a square matrix A is called nilpotent if Ak = O
for some integer k > 0. Find a formula for the exponential of a nilpotent
3× 3 matrix A such that A3 = O.

Exercise 9.69. Solve the first order system x′(t) = Ax(t) with x(0) =
(
a
b

)
for the following matrices A:(

1 2
2 1

)
,

(
0 1
1 0

)
,

(
1 −1
1 −1

)
.

Exercise 9.70. Compute the nth power of all the matrices of Exercise 9.63
and also the 3× 3 all 1’s matrix.

Exercise 9.71. Show that if A is skew symmetric (i.e. AT = −A), then
exp (A) is orthogonal.

Exercise 9.72. Compute exp (A) in the case A =
(

0 θ
−θ 0

)
,

Exercise 9.73. ∗ Show that every A ∈ Cn×n is similar to an upper trian-
gular matrix.
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9.6 Summary

Let A be an n × n matrix over F. An eigenpair for A consists of a pair
(λ,v), where λ ∈ F, v ∈ Fn − {0} and Av = λv. The scalar λ is called an
eigenvalue, and v is called an eigenvector associated to λ. Eigenvalues and
eigenvectors are similarly defined for a linear transformation T : V → V in
exactly the same manner. The eigenvalues of a square matrix A over F are
the roots of the characteristic polynomial pA(λ) = det(A− λIn).

Similar matrices have the same characteristic polynomial. Hence if V is
a finite dimensional vector space , the characteristic polynomial of T may
be defined as pA(λ) for any matrix representing T with respect to a basis
of V . That is, the eigenvalues for T are the eigenvalues of any matrix
representing T . Among the basic questions considered in this chapter are:
given A ∈ Fn×n, how do we find its eigenpairs, how does this tell us what the
eigenpairs of related matrices are, and, most importantly, does there exist a
basis of Fn consisting of eigenvectors? Matrices which admit eigenbases are
called diagonalizable, and linear transformations which admit eigenbases are
said to be semi-simple.

The eigenvectors of A corresponding to a given eigenvalue λ, together
with 0, form the subspace Eλ of Fn called the eigenspace of λ. The answer to
the question of whether A is diagonalizable is yes if the sum of the dimensions
of all the eigenspaces of A is n, in which case Fn is the direct sum of all
the Eλ. The question of which matrices are diagonalizable deserves more
attention, however, and it will be studied further in subsequent chapters. An
interesting fact known as the Cayley-Hamilton Theorem states that every
square matrrix satisfies its own characteristic polynomial.

The powers Am of a diagonalizable matrix A are easy to compute. This
allows one to determine the dynamical system associated to a diagonaliz-
able matrix (or more generally, the dynamical system Amv where v is an
eigenvalue of A. A well known example, the Fibonacci sequence, is shown
to come from the dynamical system associated to the matrix F =

(
1 1
1 0

)
,

hence large Fibonacci numbers are determined by the dominant eigenvalue
φ of F , which is known as the Golden Mean.

The final topic covered in this chapter is the exponential of a square
matrix over R or C. The exponential has many useful applications such as
to uncouple a linear systems of first order systems of differential equations.
It also has many much deeper applications in matrix theory.
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Chapter 10

The Inner Product Spaces Rn

and Cn

The goal of this chapter is to study some geometric problems arising in Rn

and Cn which can be treated with the techniques of linear algebra. We
will concentrate mainly on the case of Rn, since the case of Cn is handled
similarly. The first is to find the minimal distance from a point of Rn to a
subspace. This is called the least squares problem. It leads naturally to the
notions of projections and pseudo-inverses. We will also consider orthonor-
mal bases of both Rn and Cn, which will be also needed in our treatment
of the Principal Axis Theorem, proved in Chapter 11. In particular, we will
show that every subspace of either Rn or Cn has an orthonormal basis. We
will also introduce the notion of an isometry, which will allow us to extend
the above results to any finite dimensional inner product space. The last
Section is devoted to studying the rotations of R3 and to giving examples
of rotation groups.

10.1 The Orthogonal Projection on a Subspace

The purpose of this Section is to consider the problem of finding the distance
from a point of Rn to a subspace. There is an analogous problem for Cn,
and we could treat both problems simultaneously. However, to simplify the
exposition, we will concentrate on the real case.

Thus suppose W is a subspace of Rn and x ∈ Rn. The distance from
x to W is defined as the minimum distance d(x,w) = |x −w| as w varies
over W . We will show that a solution to the problem of finding the minimal
distance exists by actually constructing it. This general question turns out
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to lead to many interesting ideas, including orthogonal complements and
projections.

10.1.1 The Orthogonal Complement of a Subspace

Consider a subspace W of Rn. Recall from Example 5.34 that the orthogonal
complement of W is the subspace W⊥ of Rn defined as the set of all vectors
v ∈ Rn which are orthogonal to every vector in W . That is,

W⊥ = {v ∈ Rn | v ·w = 0 ∀ w ∈W} (10.1)

Note that W⊥ is defined whether or not W is a subspace. Furthermore, W⊥

is always a subspace of Rn irregardless of whether or not W is.
It’s instructive to visualize W⊥ in matrix terms. Suppose W is the

column space of an n×k real matrix A. ThenW⊥ = N (AT ). In other words,
ignoring the distinction between row and column vectors, the row space and
null space of a matrix are each other’s the orthogonal complements. SinceAT

is k×n, we know, from an often repeated fact, that rank(AT )+dimN (AT ) =
n. But by Section 5.3.2, the rank of AT is the dimension of the row space
of AT , which is clearly the same as the dimension of the column space of A,
namely dimW . Therefore,

dimW + dimW⊥ = n. (10.2)

This assertion is part of the following basic result.

Proposition 10.1. Let W be a subspace of Rn and W⊥ its orthogonal
complement. Then

(i) W ∩W⊥ = {0}.

(ii) Every x ∈ Rn can be orthogonally decomposed in exactly one way as
x = w + y, where w ∈ W and y ∈ W⊥. In particular, we have the
direct sum decomposition

W ⊕W⊥ = Rn.

(iii) (W⊥)⊥ = W .

Proof. Part (i) follows immediately from the fact that if v ∈W ∩W⊥, then
v ·v = 0, so v = 0. The proof of (ii) is harder. If W = Rn, there is nothing
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to prove. Otherwise, both W and W⊥ have positive dimensions. Now the
Hausdorff Intersection Formula says that

dim(W +W⊥) = dimW + dimW⊥ − dim(W ∩W⊥).

By (i) and (10.2), dim(W + W⊥) = n, so W + W⊥ = Rn. Hence the
expression x = w + y in (ii) exists. It’s unique since if x = w′ + y′, then
(x − x′) = −(y − y′), so x − x′ = y′ − y = 0 by (i). We leave (iii) as an
exercise.

Definition 10.1. Let x = w+y be the decomposition of x as in Proposition
10.1 (ii). Then w is called the component of x in W .

10.1.2 The Subspace Distance Problem

We now consider the least squares problem for a subspace W of Rn. Let
x ∈ Rn be arbitrary. We want to find the minimum distance d(x,y), as y
varies over all of W .

The minimum is called the distance from x to W . Observe that minimiz-
ing the distance d(x,y) is equivalent to minimizing the sum of squares |x−
y|2. This is a convenient simplification so that we can use the Pythagorean
property of the inner product. By part (ii) of Proposition 10.1, we may
decompose x uniquely as x = w + v with w ∈ W and v ∈ W⊥. Then for
any y ∈W , (x−w) · (w − y) = 0, so, by Pythagoras,

|x− y|2 = |(x−w) + (w − y)|2

= |x−w|2 + |w − y|2

≥ |x−w|2.

Thus the minimum distance is realized by the component w of x in W . To
summarize this, we state

Proposition 10.2. The distance from x ∈ Rn to the subspace W is |x−w|,
where w is the component of x in W . Put another way, the distance from
x to W is |y|, where y is the component of x in W⊥.

10.1.3 The Projection on a Subspace

The above solution of the least squares problem now requires us to find a
way to compute the expression for the component w of x in W . To do so,
we begin with the following definition.
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Definition 10.2. The orthogonal projection of Rn onto a subspace W is
the transformation PW : Rn → W defined by PW (x) = w, where w is the
component of x in W .

Thus PW (x) is the unique solution of the least squares problem for the
subspace W . One usually calls PW simply the projection of Rn onto W . We
now derive a method for finding PW .

Let w1, . . . ,wm be a basis of W , and put A = (w1 · · · wm). Then W
is the column space col(A) of A. Note that A ∈ Rn×m. Putting w = PW (x),
notice that w satisfies the normal equations:

w = Av and AT (x−w) = 0, (10.3)

for some v ∈ Rm. The first equation simply says w is a linear combination
of w1, . . . ,wm, while the second says that x−w ∈W⊥, since the rows of AT

span W . By Proposition 10.1 (ii), both equations have solutions. The only
question is whether the solution can be expressed elegantly and usefully.
Multiplying the equation w = Av by AT leads to the single equation

ATx = ATw = ATAv.

We now need the following fact.

Proposition 10.3. Let A ∈ Rn×m. Then A and ATA have the same rank.
In particular, if rank(A) = m, then ATA is invertible.

The proof is outlined in Exercise 10.14. Hence we can uniquely solve for
v. Indeed,

v = (ATA)−1ATx.

Multiplying by A, we get an expression for w in the following elegant form:

w = Av = A(ATA)−1ATx. (10.4)

Therefore,
PW (x) = A(ATA)−1ATx. (10.5)

This equation says that PW is the linear transformation from Rn to Rn

with matrix A(ATA)−1AT ∈ Rn×n. Whether we write PW : Rn → Rn or
PW : Rn → W is immaterial. We will frequently write PW = A(ATA)−1AT

below.
Let’s next consider some examples.
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Example 10.1. Recall that the case of a projection from R2 onto a line was
studied in Example 7.9. We now generalize it to the case where W is a line
in Rn, say W = Rw. Then the matrix of PW is given by w

(
wTw

)−1wT , so

PW (x) =
wTx
wTw

w.

This verifies the formula of Example 7.9.

Example 10.2. Let

A =


1 −1
2 1
1 0
1 1

 .

Then A has rank 2, and

ATA =
(

7 2
2 3

)
.

Hence, by a direct computation,

PW = A(ATA)−1AT =
1
17


14 1 5 4
1 11 4 7
5 4 3 1
4 7 1 6

 .

Example 10.3. Suppose W = Rn. Then clearly, PW = In. For, in this
case, A has rank n, so A and AT are both invertible. Thus

PW = A(ATA)−1AT = A(A−1(AT )−1)AT = In

as claimed.

The following Proposition summarizes what we can now say about pro-
jections. Assume as above that A ∈ Rn×m has rank m and W = col(A).
The reader should compare this result with Example 7.9.
Proposition 10.4. The projection PW : Rn → W is a linear transforma-
tion, and

x = PW (x) + (x− PW (x))

is the orthogonal sum decomposition of x into the sum of a component in
W and a component in W⊥. In addition, PW has the following properties:

(i) if w ∈W , then PW (w) = w;
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(ii) PWPW = PW ; and finally,

(iii) the matrix A(ATA)−1AT of PW (with respect to the standard basis)
is symmetric.

Proof. The fact that PW (x) = A(ATA)−1ATx immediately implies PW is
linear. That the decomposition x = PW (x)+ (x−PW (x)) is the orthogonal
sum decomposition of x follows from the normal equations. It remains
to show (i) − (iii). If w ∈ W , then w = w + 0 is the orthogonal sum
decomposition of w with one component in W and the other in W⊥, so it
follows from the uniqueness of such a decomposition that PW (w) = w. One
can also see A(ATA)−1ATw = w by applying the fact that w = Av. Part
(ii) follows immediately from (i) by setting w = PW (x). It can also be
shown by a direct computation. We leave part (iii) as a simple exercise.

In the next section, we express PW in another way using an orthonormal
basis. This expression is theoretically important, because it is tied up with
Fourier series.

10.1.4 Inconsistent Systems and the Pseudoinverse

Suppose A ∈ Rn×m has independent columns (equivalently rank m), and
consider the linear system Ax = b. By the independence of the columns,
this system either has a unique solution or no solution at all (when b isn’t
in col(A)). In the inconsistent case, is there a consistent system which we
can replace it with? The intuitive choice is to replace b by the element of
col(A) closest to b, which, by the above analysis, is simply PW (b).

Let us make a remark about linear transformation TA : Rm → Rn defined
by A. We know TA is injective since N (A) = {0}. Hence, by the result of
Exercise 10.18, there exists a left inverse S : Rn → Rm which is also linear.
If m 6= n, then S isn’t unique, but, nevertheless, we can ask if there is a
natural choice for S. The answer is supplied by the pseudo-inverse, which
we will now define in terms of matrices. The pseudo-inverse A+ of a matrix
A ∈ Rn×m of rank m is by definition

A+ = (ATA)−1AT . (10.6)

Proposition 10.5. The pseudo-inverse A+ of an element A of Rn×m of
rank m satisfies A+A = Im and AA+ = PW , where W = col(A).

Proof. This follows immediately from the expression for PW derived in the
previous section.
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Now suppose Ax = b is consistent. Then x = A+Ax = A+b. (Note:
if m = n, then A+ = A−1.) On the other hand, if Ax = b is inconsistent,
then the vector c in Rn nearest b such that Ax = c is consistent is given by
putting c = PW (b), by Proposition 10.4. Putting x = A+b and multiplying
by A gives Ax = AA+b = PW (b), so again we have that the solution is
A+b.

In summary, we have

Proposition 10.6. If A ∈ Rn×m has rank m, then the possibly inconsistent
system Ax = b has unique least squares solution x = A+b. That is, A+b is
the unique solution of the consistent system Ax = c, where c is the element
of the column space of A closest to b.

Thus the pseudo-inverse finds the optimal solution of an inconsistent
system. The system Ax = b, whether consistent or inconsistent, is solved
in the above sense by x = A+b.

10.1.5 Applications of the Pseudoinverse

Let’s consider a typical application. Suppose that one has m points (ai, bi)
in R2, which represent the outcome of an experiment, and the problem is to
find the line y = cx+ d fitting these points as well as possible. If the points
(ai, bi) are on a line, then there exist c, d ∈ R such that bi = cai + d for all
i = 1, . . . ,m. When this happens, we get the equation

Ax =


a1 1
a2 1
...

...
am 1


(
c
d

)
=


b1
b2
...
bm

 ,

with the unknowns c and d in the components of x. The natural move
is to find A+, and replace we replace (b1 . . . , bm)T by AA+(b1 . . . , bm)T =
(c1, . . . , cm)T . By the theory of the pseudo-inverse, all (ai, ci) lie on a line
y = cx+ d and the sum

m∑
i=1

(bi − ci)2

is minimized. Thus

x =
(
c
d

)
= A+b = (ATA)−1ATb,
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and carrying out the computation gives c and d in the form(
c
d

)
=
(∑

a2
i

∑
ai∑

ai m

)−1(∑
aibi∑
bi

)
.

The ci are then given by ci = cai + d. Note that the 2 × 2 matrix in this
solution is invertible just as long as we don’t have all ai = 0 or all ai = 1.

The problem of fitting a set of points (ai, bi, ci) to a plane is similar.
The method can also be adapted to the problem of fitting a set of points in
R2 to a nonlinear curve, such as an ellipse. This is apparently the origin of
the least squares method. The inventor of this method was the renowned
mathematician Gauss. In 1801, Gauss astonished the astronomical world by
predicting (based on at most 9◦ of the observed orbit) where astronomers
would be able to find an obscure astroid named Ceres in a full 11 months
time. Nowadays, the activity of tracking astroids is known as astrometry and
is carried out, to a large extent, by amateur astronomers. It is considered
an extremely crucial, though unglamorous, activity.
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Exercises

Exercise 10.1. Find:

(i) the component of x = (1, 1, 2)T on the line R(2,−1, 0)T , and

(ii) the minimum distance from x = (1, 1, 2)T to this line.

Exercise 10.2. Find:

(i) the component of x = (1, 1, 2, 1)T in the subspace of R4 spanned by
(1, 1,−1, 1)T and (2,−1, 0, 1)T , and

(ii) the minimum distance from x = (1, 1, 2, 1)T to this subspace.

Exercise 10.3. Show that the distance from a point (x0, y0, z0)T ∈ R3 to
the plane ax+ by + cz = d is given by

|ax0 + by0 + cz0 − d|
(a2 + b2 + c2)1/2

.

Exercise 10.4. Generalize the formula in Exercise 10.3 to the case of a
hyperplane a1x1 + · · ·+ anxn = b in Rn.

Exercise 10.5. Let A be the matrix
1 2
2 1
1 1
0 1

 .

(i) Find the projection PW of R4 onto the column space W of A.

(ii) Find the projection of (2, 1, 1, 1)T onto W .

(iii) Find the projection of (2, 1, 1, 1)T onto W⊥.

Exercise 10.6. Let W just be a subset of Rn. Show thatW⊥ is nevertheless
a subspace of Rn, and give a formula for its dimension.

Exercise 10.7. Show that every projection matrix is symmetric.

Exercise 10.8. What are the eigenvalues of a projection PW ?

Exercise 10.9. True or False: The matrix of a projection can always be
diagonalized, i.e. there always exists an eigenbasis of Rn for every PW .

Exercise 10.10. Assuming the pseudo-inverse A+ of A is defined and W =
col(A), show that A+PW = A+. Use this to find the kernel of A+.
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Exercise 10.11. Show directly that every projection matrix is symmetric.

Exercise 10.12. Diagonalize (if possible) the matrix PW in Example 10.6.

Exercise 10.13. Prove the Pythagorean relation used to prove Proposition
10.1. That is, show that if p · q = 0, then

|p + q|2 = |p− q|2 = |p|2 + |q|2.

Conversely, if this identity holds for p and q, show that p and q are orthog-
onal.

Exercise 10.14. The purpose of this exercise is to prove Proposition 10.3.

(i) Show that if A ∈ Rm×n, then N (A) = N (ATA). (Hint: note that
xTATAx = |Ax|2 for any x ∈ Rn.)

(ii) Use part (i) to make the conclusion that the ranks of ATA and A
coincide.

Exercise 10.15. Find the pseudo-inverse of the matrix
1 0
2 1
1 1
0 1

 .

Exercise 10.16. Show that the result of Exercise 10.14 does not always
hold if R is replaced with Z2 (or another Zp) by giving an explicit example
of a 3× 2 matrix A over Z2 of rank 2 so that ATA has rank 0 or 1.

Exercise 10.17. Show that if A has independent columns, then any left
inverse of A has the form A+ + C, where CA = O. (Note: CA = O is
equivalent to col(A) ⊂ N (C). If CA = O, what is (A+ + C)A? And
conversely?)

Exercise 10.18. Let F be any field. Show that every one to one linear map
T : Fm → Fn has at least one left inverse S : Fn → Fm which is linear.
(Hint: Let W = im(T ), and choose a basis of W . Then extend this basis to
a basis of Fn, and define S on this basis in an appropriate way.)

Exercise 10.19. This Exercise is a continuation of Exercise 10.18. Suppose
A ∈ Fn×m has rank m. Show there exists a nonzero matrix B ∈ Fm×n such
that BA = O and conclude from this that the linear transformation S in
Exercise 10.18 isn’t unique.
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Exercise 10.20. Suppose H is a hyperplane in Rn with normal line L.
Interpret each of PH + PL, PHPN and PNPH by giving a formula for each.

Exercise 10.21. Find the line that best fits the points (−1, 1), (0, .5), (1, 2),
and (1.5, 2.5).

Exercise 10.22. Suppose coordinates have been put on the universe so
that the sun’s position is (0, 0, 0). Four observations of a planet orbiting the
sun tell us that the planet passed through the points (5, .1, 0), (4.2, 2, 1.4),
(0, 4, 3), and (−3.5, 2.8, 2). Find the plane (through the origin) that best fits
the planet’s orbit. (Note: Kepler’s laws tell us that the orbits of the planets
lie in a plane. So if the above points don’t lie on a plane, it is because the
measurements are inaccurate.)
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10.2 Orthonormal Sets

The purpose of this section is to study orthonormal sets. In particular,
we’ll show that every subspace of Rn has an orthonormal basis and find an
alternative way to express PW .

10.2.1 Some General Properties

Suppose u1,u2, . . . ,uk are unit vectors in Rn. Then we say u1,u2, . . . ,uk
are orthonormal if and only if ui ·uj = 0 if i 6= j. The following Proposition
is very basic.
Proposition 10.7. Suppose u1,u2, . . . ,uk are orthonormal, and assume
x =

∑k
i=1 aiui. Then:

(i) ai = x · ui for each i;

(ii) |x|2 =
∑k

i=1 a
2
i ; and

(iii) in particular, u1,u2, . . . ,uk are linearly independent.

Proof. For (i), note that

x · uj = (
k∑
i=1

aiui) · uj =
k∑
i=1

ai(ui · uj) = aj ,

by the definition of an orthonormal set. For (ii), we have

|x|2 = x · x =
k∑

i,j=1

aiajui · uj =
k∑
i=1

a2
i .

Part (iii) is an immediate consequence of (ii).

10.2.2 Orthonormal Bases

An orthonormal basis of a subspace W of Rn is an orthonormal subset of
W which spans W . The following result is an immediate consequence of the
previous Proposition.
Proposition 10.8. If u1,u2, . . . ,uk is an orthonormal basis of a subspace
W of Rn, then every x ∈W has the unique expression

x =
k∑
i=1

(x · ui)ui. (10.7)
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In particular, every vector in W is the sum of its projections on an arbitrary
orthonormal basis of W .

The coefficients of x in (10.7) are called the Fourier coefficients of x with
respect to the orthonormal basis.

Example 10.4. Here are some examples.

(a) The standard basis e1, . . . , en is an orthonormal basis of Rn.

(b) u1 = 1√
3
(1, 1, 1)T , u2 = 1√

6
(1,−2, 1)T , u3 = 1√

2
(1, 0,−1)T are an

orthonormal basis of R3. The first two basis vectors are an orthonormal
basis of the plane x− z = 0.

(c) The columns of an orthogonal matrix Q ∈ Rn×n are always an or-
thonormal basis of Rn and conversely. For example, the matrix

Q =
1
2


1 1 1 1
−1 1 −1 1
1 −1 −1 1
1 1 −1 −1

 .

Using this fact, produce another orthonormal bases of R4.

Example 10.5. For example, using the orthonormal basis of R4 formed by
the columns of the matrix Q in the previous example, we have

1
0
0
0

 =
1
4


1
−1
1
1

+
1
4


1
1
−1
1

+
1
4


1
−1
−1
−1

+
1
4


1
1
1
−1

 .

We now come to an important result.
Proposition 10.9. A non trivial subspace of Rn admits an orthonormal
basis.

Proof. Suppose W is a subspace and dimW > 0. Weuse by induction
on dimW . If dimW = 1, the result is obvious (why?). Thus suppose
dimW = m > 1 and the result is true for any subspace of Rn of dimension
at most m− 1. Let u be a unit vector in W and let H = (Ru)⊥ ∩W . Then
H ⊂ W , but H 6= W since u 6∈ W . Thus dimH < m. Hence H admits an
orthonormal basis, call it O. Now let x be an arbitrary element of W . Then
y = x − (x · u)u ∈ H, so y is a linear combination of the elements of O.
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Thus u and O form a spanning set for W . But by definition, u is orthogonal
to every element of O, so we get an orthonormal basis of W .

Note that the previous argument shows that for any nonzero u ∈ W ,
dim

(
(Ru)⊥ ∩W

)
= dimW − 1.

10.2.3 Projections and Orthonormal Bases

We now show that orthonormal bases give an alternative way to approach
projections. In fact, we have

Proposition 10.10. Let u1, . . . ,um be an orthonormal basis for a subspace
W of Rn. Then the projection PW : Rn →W is given by

PW (x) =
m∑
i=1

(x · ui)ui. (10.8)

If Q ∈ Rn×m is the matrix Q = (u1 · · · um) with orthonormal columns,
then

PW (x) = QQTx. (10.9)

Put another way,

PW =
m∑
i=1

uiuTi . (10.10)

Proof. Let w =
∑m

i=1(x · ui)ui. By the definition of PW (x), it suffices to
show that x −w ∈ W⊥. For then, x = w + (x −w) is the decomposition
of x into its component in W and its component in W⊥, which we know
characterizes PW (x). But clearly (x − w) · ui = 0 for each i, so indeed,
x−w ∈W⊥ as claimed.

It remains to (10.9). But since the columns of Q are a basis of W , the
matrix of PW is Q(QQT )−1QT . But, as the columns of Q are orthonormal,
we have QTQ = Im. Therefore, we have the result.

Equation (10.9) gives the simplest expression for PW , but it requires
an orthonormal basis. Formula (10.8) is sometimes called the projection
formula.

Example 10.6. Let W = span{(1, 1, 1, 1)T , (1,−1,−1, 1)T }. To find the
matrix of PW , observe that u1 = 1/2(1, 1, 1, 1)T and u2 = 1/2(1,−1,−1, 1)T

form an orthonormal basis of W , so
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PW = QQT = 1/4


1 1
1 −1
1 −1
1 1

(1 1 1 1
1 −1 −1 1

)
.

Carrying out the calculation, we find that

PW =
1
2


1 0 0 1
0 1 1 0
0 1 1 0
1 0 0 1

 .

Here is an important remark that will be expanded in Section 10.4. The
formula PW = A(ATA)−1AT only applies when W is a subspace of Rn. On
the other hand, formula (10.10) for PW works as long as W is any finite
dimensional subspace of an arbitrary inner product space.
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Exercises

Exercise 10.23. Expand (1, 0, 0)T using the orthonormal basis consisting of
the columns of the matrix Q of Example 10.4(b). Do the same for (1, 0, 0, 0)
using the rows of U .

Exercise 10.24. Find an orthonormal basis for the plane x− 2y + 3z = 0
in R3. Now extend this orthonormal set in R3 to an orthonormal basis of
R3.

Exercise 10.25. Suppose n = 3 and W is a line or a plane. Is it True or
False that there exists an orthonormal eigenbasis for PW ?

Exercise 10.26. Finish proving Proposition 10.7 by showing that any or-
thonormal set in Rn is linearly independent.

Exercise 10.27. Suppose u1, . . . ,uj−1,un is a basis of Rn such that
every vector w in Rn satisfies (10.7). Prove that u1, . . . ,uj−1,un form an
orthonormal basis.

Exercise 10.28. Let Q = (u1u2 · · ·un) be orthogonal. If Q is not symmet-
ric, show how to produce a new orthonormal basis of Rn from the columns of
Q. What new orthonormal basis of R4 does one obtain from the orthonormal
basis in Example 10.4, part (c)?

Exercise 10.29. Let u1,u2, . . . ,un be an orthonormal basis of Rn. Show
that In =

∑n
1=i uiuTi . This verifies the identity in (10.7).

Exercise 10.30. Show that the reflection Hu through the hyperplane or-
thogonal to a unit vector u ∈ Rn is given by the formula Hu = In − 2PW ,
where W = Ru (so H = W⊥).

Exercise 10.31. Using the formula of Exercise 10.30 for the reflection Hu

through the hyperplane orthogonal to a unit vector u ∈ Rn, find the matrix
of Hu in the following cases:

(a) u is a unit normal to the hyperplane x1 +
√

2x2 + x3 = 0 in R3.

(b) u is a unit normal to the hyperplane x1 + x2 + x3 + x4 = 0 in R4.

Exercise 10.32. Suppose A = QDQ−1 with Q orthogonal and D diagonal.
Show that A is always symmetric and that A is orthogonal if and only if all
diagonal entries of D are either ±1. Show that A is the matrix of a reflection
Hu precisely when D = diag(−1, 1, . . . , 1), that is exactly one diagonal entry
of D is −1 and all others are +1.
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Exercise 10.33. How would you define the reflection H through a subspace
W of Rn? What properties should the matrix of H have? For example, what
should the eigenvalues of H be?

Exercise 10.34. Show that the matrix of the reflection Hu is always a
symmetric orthogonal matrix such that Huu = −u and Hux = x if x·u = 0.

Exercise 10.35. Let Q be the matrix of the reflection Hb.

(a) What are the eigenvalues of Q?

(b) Use the result of (a) to show that det(Q) = −1.

(c) Show that Q can be diagonalized by explicitly finding an eigenbasis
of Rn for Q. Hence, every reflection is semi-simple.

Exercise 10.36. Check directly that if R = In − PW , then R2 = R. Verify
also that the eigenvalues of R are 0 and 1 and that E0 = W and E1 = W⊥.

Exercise 10.37. Let u be a unit vector in Rn. Show that the reflection Hu

through the hyperplane H orthogonal to u admits an orthonormal eigenba-
sis.
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10.3 Gram-Schmidt and the QR-Factorization

10.3.1 The Gram-Schmidt Method

We showed in the last Section that any subspace of Rn admits an or-
thonormal basis. Moreover, the proof essentially showed how such a basis
can be obtained. Now, suppose W is a subspace of Rn with a given ba-
sis w1, . . . ,wm. We will now give a constructive procedure, called the
Gram-Schmidt method, which shows how to construct an orthonormal basis
u1, . . . ,um of W such that

span{u1, . . . ,uk} = span{w1, . . . ,wk} (10.11)

for each index for k = 1, . . .m. In fact, as we will note later, the Gram-
Schmidt method works in an arbitrary inner product space such as C[a, b],

We will prove

Proposition 10.11. For each 1 ≤ j ≤ m, put Wj = span{w1, . . . ,wj}.
Let v1 = w1 and, for j ≥ 2, put

vj = wj − PWj−1(wj). (10.12)

Then each vj ∈Wj , vj 6= 0 and vj · vk = 0 if j 6= k. Putting

ui = |vi|−1vi,

we therefore obtain an orthonormal basis of W satisfying (10.11). Moreover,
if j ≥ 2,

vj = wj − (wj · u1)u1 − (wj · u2)u2 − · · · − (wj · uj−1)uj−1. (10.13)

Proof. Clearly vj ∈ Wj for all j. If vj = 0, then wj ∈ Wj−1, contradicting
the linear independence of w1, . . . ,wm. In addition, by Proposition 10.4, vj
is orthogonal to Wj−1 if j ≥ 2. Since Wj ⊂Wj+1 , it follows that vj ·vk = 0
if j < k. Hence u1, . . . ,um is an orthonormal basis of W satisfying (10.11).
Finally, equation (10.13) is just an application of the projection formula.

10.3.2 The QR-Decomposition

The Gram-Schmidt method can be stated in a form which is convenient for
computations. This form is also the basis of the the QR-algorithm. This
expression is called the QR-decomposition.
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The main point in the QR-decomposition becomes clear by considering
an example. SupposeA = (w1 w2 w3) is a real n×3 matrix with independent
columns. Applying Gram-Schmidt to w1,w2,w3 gives an orthonormal basis
u1,u2,u3 of the column space W = col(A). Moreover, by construction,

w1 = u1,

w2 = (w2 · u1)u1 + (w2 · u2)u2,

and finally

w3 = (w3 · u1)u1 + (w3 · u2)u2 + (w3 · u3)u3.

Thus,

(w1 w2 w3) = (u1 u2 u3)

w1 · u1 w2 · u1 w3 · u1

0 w2 · u2 w3 · u2

0 0 w3 · u3

 .

In general, if A = (w1 · · · wm) is an n × m matrix over R with linearly
independent columns, and Q = (u1 · · · um) is the n ×m matrix with or-
thonormal columns produced by the Gram-Schmidt method, then the matrix
R of Fourier coefficients of the wi in terms of the orthonormal basis given
by Gram-Schmidt is upper triangular. Moreover, R is invertible since its
diagonal entries wi · ui 6= 0. Summarizing, we have
Proposition 10.12. Every A ∈ Rn×m of rank m can be factored

A = QR. (10.14)

where Q ∈ Rn×m has orthonormal columns and R ∈ Rm×m is invertible and
upper triangular.

Note that the QR-decomposition isn’t unique, but it can always be ar-
ranged so that the diagonal entries of R are positive. If A is square, then
both Q and R are square. In particular, Q is an orthogonal matrix. The
factorization A = QR is the first step in the QR-algorithm, which is an
important method for approximating the eigenvalues of A.
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Exercises

Exercise 10.38. Let W ⊂ R4 be the span of (1, 0, 1, 1)T , (−1, 1, 0, 0)T , and
(1, 0, 1,−1)T .

(i) Find an orthonormal basis of W .

(ii) Expand (0, 0, 0, 1)T and (1, 0, 0, 0)T in terms of this basis.

Exercise 10.39. Find an orthonormal basis of the plane W in R4 spanned
by (0, 1, 0, 1)T and (1,−1, 0, 0)T . Do the same for W⊥. Now find an or-
thonormal basis of R4 containing the orthonormal bases of W and W⊥.

Exercise 10.40. Let

A :=


1 −1 1
0 1 0
1 0 1
1 0 −1

 .

Find the QR-factorization of A such that R has a positive diagonal.

Exercise 10.41. Find a 4×4 orthogonal matrix Q whose first three columns
are the columns of A in the previous problem.

Exercise 10.42. What would happen if the Gram-Schmidt method were
applied to a set of vectors that were not lineary independent? In other
words, why can’t we produce an orthonormal basis from nothing?

Exercise 10.43. In the QR-decomposition, the diagonal entries of R are
non zero. What would happen if there were a zero on R’s diagonal?

Exercise 10.44. Show that for any subspace W of Rn, PW can be expressed
as PW = QDQT , whereD is diagonal andQ is orthogonal. Find the diagonal
entries of D, and describe Q.

Exercise 10.45. Let A have independent columns. Verify the formula
P = QQT using A = QR.

Exercise 10.46. Suppose A has independent columns and let A = QR be
the QR-factorization of A.

(i) Find the pseudo-inverse A+ of A in terms of Q and R; and

(ii) Find a left inverse of A in terms of Q and R.
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10.4 Further Remarks on Inner Product Spaces

Recall from Chapter 4 that an inner product space is a real vector space V
with an inner product usually denoted by (x,y). The main example of an
inner product space is Euclidean space Rn, the inner product being the dot
product x · y. The purpose of this section is to consider some aspects of
general inner product spaces, such as Hermitian inner product spaces and
isometries. We will begin with some examples.

10.4.1 The Space of Linear Transformations L(Rn, Rn)

Recall that L(Rn,Rn) denotes the space of linear transformations T : Rn →
Rn. This space has an inner product. This isn’t surprising since we know
that L(Rn,Rn) is isomorphic with Rn×n (a linear transformation T being
sent to its matrix), which in turn is isomorphic with the inner product space
with Rn2

. There is an elegant way to define an inner product on Rn×n. If
A,B ∈ Rn×n, put

(A,B) = Trace(ATB).

It can easily be seen that if A = (a1 a2 · · · an) and B = (b1 b2 · · · bn).
then

(A,B) =
n∑
i=1

ai · bi =
n∑
i=1

aTi bi.

The axioms for an inner product follow readily. For example, since Trace(A+
B) = Trace(A) + Trace(B) and Trace(rA) = rTrace(A), it follows that the
inner product is linear in each component. Moreover, (A,B) = (B,A) so it
is symmetric. Finally, if A 6= O, then

(A,A) =
n∑
i=1

aTi ai =
n∑
i=1

|ai|2 > 0,

since some ai 6= 0.
Proposition 10.13. The matrices Eij , 1 ≤ i, j ≤ n form an orthonormal
basis of Rn×n.

Proof. First note EijErs = Eis if j = r and is EijErs = O otherwise.
Furthermore, Trace(Eis) = 0 or 1 depending on whether i = s or not.
Consequently,

(Eij , Ers) = Trace(ETijErs) = Trace(EjiErs) =

{
1 if r = i, j = s

0 otherwise
.

This gives the result.
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10.4.2 The Space C[a, b]

We now consider the space C[a, b] of continuous real valued functions on
a closed interval [a, b] in R which was already introduced in Example 4.16.
This is an example of an infinite dimensional inner product space. Recall
that the inner product on C[a, b] is defined by

(f, g) =
∫ b

a
f(t)g(t)dt. (10.15)

The notion of orthogonality in a general inner product space V is the
same as for Rn. Two vectors x and y are orthogonal if and only if (x,y) = 0.
Thus we can always try to extend the results we obtained for Rn on least
squares and projections to an arbitrary V . There is no difficulty in doing
this if V is a finite dimensional inner product space. The reason for this is
explained in Section 10.4.4 below.

Problems arise in the infinite dimensional setting, however, due to the
fact that there isn’t a well defined notion of the projection of V to an ar-
bitrary subspace W . The difficulty is in trying to imitate the result in the
finite dimensional case which says that V = W +W⊥. Moreover, in the infi-
nite dimensional case, one has to reformulate the notion of an orthonormal
basis, which we will not attempt to do here.

Nevertheless, if W is a finite dimensional subspace of an inner product
space V , then W has an orthonormal basis of W . In fact, such a basis can
be constructed from any starting basis of W by applying Gram-Schmidt.
Thus the Projection Formula gives a well defined projection of V onto W .

In particular, a set of functions S ⊂ C[a, b] is orthonormal if and only if
for any f, g ∈ S,

(f, g) =
{

0 if f 6= g
1 if f = g

Suppose {f1, f2, . . . } is an orthonormal set in C[a, b]. As above, the Fourier
coefficients of a function f ∈ C[a, b] are the numbers (f, fi), i = 1, 2, . . . .

Example 10.7. Let us use Gram-Schmidt to find an orthonormal basis of
the three dimensional subspace W of C[−1, 1] spanned by 1, x and x2. We
leave it as an exercise to check that (1, 1) = 2, (1, x) = 0, (x, x) = (1, x2) =

2/3, (x, x2) = 0 and (x2, x2) = 2/5. Now 1/
√

2 and x/
√

2
3 are orthonormal.

The component of x2 on the subspace they span is 1/3. But,

||x2 − 1/3||2 =
∫ 1

−1
(x2 − 1/3)2dx =

8
45
.
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Thus the desired orthonormal basis is f1 = 1/
√

2, f2 = x/
√

2
3 and f3 =

α(x2 − 1/3), where α =
√

45
8 .

Example 10.8. To continue the previous example, suppose we want to
minimize the integral∫ 1

−1
(cosx− (a1 + a2x+ a3x

2))2dx.

In other words, we want to minimize the square of the distance in C[−1, 1]
from cosx to the subspace spanned by 1, x and x2.

We can realize the solution by proceeding exactly as in the case of Rn,
except that we replace Rn by the subspace of C[−1, 1] generated by 1, x, x2

and cosx. Thus we need to compute the Fourier coefficients

αi = (cosx, fi) =
∫ 1

−1
cosxfi(x)dx.

It turns out that α1 = 2 cos 1√
2
, α2 = 0 (since cosx is even and x is odd) and

α3 =
√

45√
8

(4 cos 1− 8
3 sin 1). Thus the best least squares approximation is

f(x) = cos 1 +
√

45√
8

(4 cos 1− 8
3

sin 1)(x2 − 1
3
).

We leave it to the reader to finish the example by computing the explict
value of

∫ 1
−1(cosx− f(x))2dx. (Just kidding.)

10.4.3 Hermitian Inner Products

As we also saw in Chapter 4, complex n-space Cn admits a Hermitian inner
product w · z for all w, z ∈ Cn. Here

w • z =
n∑
i=1

wizi. (10.16)

This can be put in matrix form by defining wH to be wT . Then the Her-
mitian inner product can be expressed as w • z = wHz.

The Hermitian inner product satisfies the following properties with re-
spect to scalar multiplication by C.

(αw) • z = α(w • z),



320

and
w • (αz) = α(w • z),

for all α ∈ C. Thus

(rw) • z = w • (rz) = r(w • z)

if r ∈ R. Note, however, that a Hermitian inner product is not an inner
productin the usual sense, since, in general, w • z 6= z ·w. Nevertheless, the
Hermitian length squared |w|2 = w • w = wHw coincides with the usual
Euclidean length.

Recall that a general Hermitian inner product space is a complex vector
space with a Hermitian inner product (see Definition 4.14). Such a space is
called a Hilbert space.

Definition 10.3. Let V be a Hermitian inner product space, for example Cn

with the above Hermitianinner product. A basis of V which is orthonormal
for the Hermitian inner product is called a Hermitian basis.

For example, the standard basis e1, . . . , en of Cn is Hermitian. The basis
1√
2
(1, i)T , 1√

2
(1,−i)T of C2 is another example of a Hermitian basis.

We next consider the obvious extension of the Gram-Schmidt method to
the Hermitian case.

Proposition 10.14. Every finite dimensional Hermitian inner product space
V admits a Hermitian orthonormal basis. In fact, given a basis w1, . . . ,wn

of V , there exists a Hermitian orthonormal basis z1, . . . , zn with the prop-
erty that z1, . . . , zk and w1, . . . ,wk span the same subspace of V for each
index k.

Proof. Notice that the obvious modification of the Gram-Schmidt method
can be applied here.

The reader should be aware that all the results about least squares and
projections go through in the Hermitian case in the same way as the real case,
although slight modifications are needed to take into account the difference
between the real and the Hermitian inner product.

Just as orthonormal bases give rise to orthogonal matrices, Hermitian
bases give rise to a class of matrices known as unitary matrices.

Definition 10.4. An n × n matrix U over C is said to be unitary if and
only if UHU = In. In other words, U is unitary if and only if the columns
of U form a Hermitian basis of Cn.
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We will denote the set of all n× n unitary matrices by U(n,C). Notice
that O(n,R) ⊂ U(n,C).

Proposition 10.15. U(n,C) is a matrix group.

Some of the other properties of unitary matrices are mentioned in the
next Proposition.

Proposition 10.16. Let U ∈ Cn×n. Then U is unitary if and only if the
columns of U form a Hermitian basis of Cn. Moreover,

(i) every eigenvalue of a unitary matrix has absolute value 1, and

(ii) the determinant of a unitary matrix has absolute value 1, and

Proof. This is left as an exercise.

10.4.4 Isometries

We now introduce the notion of an isometry. Isometries enable one to trans-
fer properties of one inner product space to another.

Definition 10.5. Let U and V be inner product spaces, and suppose ρ :
U → V is a transformation such that

(ρ(x), ρ(y)) = (x,y)

for all x,y ∈ U . Then ρ is called an isometry.

A similar definition holds if U and V are Hermitian inner product spaces.

Proposition 10.17. Let U and V be any inner product spaces, and assume
ρ : U → V is an isometry. Then ρ is a one to one linear transformation.

Proof. To show ρ is linear, we have to show that for all x,y ∈ Rn and r ∈ R,

|ρ(x + y)− ρ(x)− ρ(y)|2 = 0, (10.17)

and
|ρ(rx)− rρ(x)|2 = 0. (10.18)

For the first, after expanding the left hand side and using the fact that ρ is
an isometry, we get

|ρ(x + y)− ρ(x)− ρ(y)|2 =
(
(x + y), (x + y)

)
−2
(
(x + y),x

)
− 2
(
(x + y),y

)
− 2(x,y)−

(
x,x

)
−
(
y,y

)
.
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But expanding the right hand side gives 0, so we get (10.17). The proof that
|ρ(rx)− rρ(x)|2 = 0 is similar so we will omit it. Hence ρ is indeed linear.

To show ρ is injective, it suffices to show that ρ(x) = 0 implies x = 0.
But |ρ(x)|2 = |x|2, so this is clear.
Proposition 10.18. Suppose U and V are finite dimensional inner product
spaces. Then every isometry ρ : U → V carries each orthonormal basis of
U to an orthonormal basis of ρ(U). Conversely, a linear transformation
ρ : U → V which carries some orthonormal basis of U to an orthonormal
basis of ρ(U) is an isometry.

The proof is an exercise. There is also a Hermitian version, which the
reader may readily formulate. Thus a isometry of Rn is simply an orthogonal
matrix Q. The set of isometries of Rn is the matrix group O(n,R), the
orthogonal group of Rn. Similarly, the set of all linear isometries of Cn is
the matrix group U(n,C) consisting of all n× n unitary matrices.

The reader should note that any two finite dimensional inner product
spaces of the same dimension are isometric (see Exercise 10.51). Hence if
V is a finite dimensional inner product space of dimension n, then V is
isometric to Rn. If V is
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Exercises

Exercise 10.47. This problem concerns the Gram-Schmidt method for the
inner product on C[−1, 1].

(a) Apply Gram-Schmidt to the functions 1, x, x2 on the interval [−1, 1] to
produce an orthonormal basis of the set of polynomials on [−1, 1] of degree
at most two. The resulting functions P0, P1, P2 are the first three normalized
orthogonal polynomials of Legendre type.

(b) Show that your nth polynomial Pn satisfies the differential equation

(1− x2)y′′ − 2xy′ + n(n+ 1)y = 0.

(c) The nth degree Legendre polynomial satisfies this second order differen-
tial equation equation for all n ≥ 0. This and the orthogonality condition
can be used to generate all the Legendre polynomials. Find P3 and P4

without GS.

Exercise 10.48. Using the result of the previous exercise, find the projec-
tion of x4 + x on the subspace of C[−1, 1] spanned by 1, x, x2.

Exercise 10.49. Find approprate constants a, b ∈ R which minimize the
value of ∫ π

−π

(
tanx− a− b cosx

)2
dx.

Don’t evaluate the integral.

Exercise 10.50. Show that every finite dimensional real vector space ad-
mits an inner product.

Exercise 10.51. Show that any two finite dimensional inner product spaces
of the same dimension are isometric.

Exercise 10.52. Prove Proposition 10.18.

Exercise 10.53. Suppose V is an inner product space with a given ba-
sis v1, . . . ,vn. Using this basis, we can introduce coordinates on V , as in
Chapter 7. Does the formula A(ATA)−1AT for projecting still work when
the columns of A are the coordinates of some independent subset of V with
respect to the basis consisting of the vi? Discuss this.

Exercise 10.54. Show that U(n,C) is a matrix group.

Exercise 10.55. Suppose U ∈ U(n,C). Show that |Trace(U)| ≤ n.
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10.5 The Group of Rotations of R3

In crystallography, the study of the molecular structure of crystals, one of
the basic problems is to determine the set of rotational symmetries of a
particular crystal. A general problem of this type is determine the set of all
rotational symmetries Rot(S) of an arbitrary solid S in R3. We will show
that Rot(S) is in fact a matrix group. This isn’t a trivial assertion, since it
isn’t clear from the definition of a rotation given below that the composition
of two rotations is a rotation. Note that we will always consider the identity
to be a rotation. Hence, Rot(S) is always non empty, although frequently
the identity is its only element.

A simple, down to earth problem is to describe Rot(S) when S is a
Platonic solid in R3. Note that a Platonic solid is a solid whose boundary
is a union of plane polygons, all of which are congruent. It has been known
since the ancient Greeks that there are exactly five types of Platonic solids: a
cube, a regular quadrilateral, a regular tetrahedron, a regular dodecahedron
and a regular icosahedron.

10.5.1 Rotations of R3

The first problem is how to define a what rotation of R3 should be. We will
use a definition due to Euler, which intuitively makes good sense. Namely,
a rotation of R3 is a transformation ρ : R3 → R3 which fixes every point on
some line ` through 0 and which rotates every plane orthogonal to ` through
the same fixed angle θ.

Using this as the basic definition, we will first give a concrete description
of the set of rotations of Rot(R3) and prove that it is indeed a matrix group.
Suppose ρ ∈ Rot(R3), and let x, y be a pair of arbitrary nonzero elements
of R3. Clearly |ρ(x)| = |x|, |ρ(y)| = |y| and the angle between ρ(x) and
ρ(y) is the same as the angle between x and y. It follows that

ρ(x) · ρ(y) = x · y. (10.19)

Therefore, by Proposition 10.17, ρ is linear, and, by Proposition 10.18, its
matrix M(σ) with respect to the standard basis is orthogonal. Hence, iden-
tifying σ ∈ Rot(R3) with its matrix M(σ), we therefore see that Rot(R3) ⊂
O(3,R), the set of 3× 3 orthogonal matrices.

Our next claim is that every ρ ∈ Rot(R3) has a determinant one. Indeed,
by definition, ρ leaves a line ` through the origin pointwise fixed, so ρ has
eigenvalue 1. Moreover, the plane P through 0 orthogonal to ` is rotated
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through an angle θ, hence there exists an orthonormal basis of R3 for which
the matrix R of ρ has the form

R =

1 0 0
0 cos θ − sin θ
0 sin θ cos θ

 .

Obviously, det(R) = 1, so det(ρ) = 1 also since det(σ) is the determinant of
any matrix representing §.

To complete the description of Rot(R3), we need to bring in the matrix
group SO(3). Recall that SL(3,R) denotes the matrix group of all 3×3 real
matrices of determinant 1. As mentioned in Chapter 8, SL(3,R) consists of
3×3 real matrices A whose linear transformation TA preserves both volumes
and orientation. Put SO(3) = SL(3,R) ∩ O(3,R). We call SL(3,R) the
special linear group and SO(3) the special orthogonal group. By the above,
Rot(R3) ⊂ SO(3). In fact, we will now show

Theorem 10.19. After identifying each σ ∈ Rot(R3) with its matrix M(σ),
we have Rot(R3) = SO(3).

Proof. It suffices to show SO(3) ⊂ Rot(R3), i.e. every element of SO(3)
defines a rotation. I claim that if σ ∈ SO(3), then 1 is an eigenvalue of σ,
and moreover, if σ 6= I3, the eigenspace E1 of 1 has dimension exactly one.
That is, E1 is a line. To see this, recall that every 3× 3 real matrix has at
least one real eigenvalue. Also, since we also know that the real eigenvalues
of an orthogonal matrix are either 1 or −1, it follows that the eigenvalues
of σ satisfy one of the following possibilities:

(i) 1 of multiplicity three,

(ii) 1,−1, where −1 has multiplicity two, and

(iii) 1, λ, λ, where λ 6= λ.
The last possibility is due to the fact that the complex roots of a real

polynomial occur in conjugate pairs, and λλ > 0 if λ 6= 0.
In all three cases, 1 is an eigenvalue of any σ ∈ SO(3), so dimE1 ≥ 1. I

claim that if σ ∈ SO(3) and σ 6= I3, then dimE1 = 1. Indeed, if dimE1 = 3,
then σ = I3, so we only have to eliminate the possibility that dimE1 = 2.
But if dimE1 = 2, then σ fixes the plane E1 pointwise. Since σ also preserves
angles, it also has to send the line L = E⊥1 to itself. Thus L is also an
eigenspace. The only possible real eigenvalues of σ being 1 or -1, we deduce
from the assumption that dimE1 = 2 that there exists a basis of R3 so that
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the matrix of σ (i.e. Tσ) is 1 0 0
0 1 0
0 0 −1

 .

But that implies det(σ) = −1, so dimE1 = 2 cannot happen. This gives the
claim that dimE1 = 1 if σ 6= I3.

Therefore σ fixes every point on a unique line ` through the origin and
maps the plane `⊥ orthogonal to ` into itself. It remains to show σ rotates
`⊥. Let u1,u2,u3 be an orthonormal basis in R3 such that u1,u2 ∈ `⊥ and
u3 ∈ ` (so σ(u3) = u3). Since σu1 and σu2 are orthogonal unit vectors on
`⊥, we can choose an angle θ such that

σu1 = cos θu1 + sin θu2

and
σu2 = ±(sin θu1 − cos θu2).

Let Q be the matrix of σ with respect to the basis u1,u2,u3. Then

Q =

cos θ ± sin θ 0
sin θ ±(− cos θ) 0

0 0 1

 .

But det(σ) = 1 so det(Q) = 1 also. Hence the only possibility is that

Q =

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 . (10.20)

Consequently, σ fixes ` pointwise and rotates the plane `⊥ through the angle
θ. This implies σ defines a rotation of R3, so the proof is finished.

We get a pleasant conclusion.
Corollary 10.20. Rot(R3) is a matrix group. In particular, the composi-
tion of two rotations of R3 fixing 0 is another rotation fixing 0.

Proof. Since SO(3) = SL(3,R)∩O(3,R), it is the intersection of two matrix
groups. But the intersection of two matrix groups is also a matrix group, so
the result follows.

The fact that the composition of two rotations about 0 is a rotation
about 0 is certainly not obvious from the definition. It depends heavily
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on the fact that det(AB) = det(A) det(B) if A and B lie in R3×3. But
this is verifiable by a straightforward calculation. The question of how one
describes the unique line fixed pointwise by the composition of two rotations
about 0 can be answered, but the result is not worth mentioning here.

The above argument gives another result.
Proposition 10.21. The matrix of a rotation σ ∈ SO(3) is similar via
another rotation to a matrix of the form

Q =

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 .

10.5.2 Rotation Groups of Solids

One of the nicest application of rotations is to study the symmetries of solids
such as crystals. As usual, we will continue to identify a matrix A and its
transformation TA. We begin with

Definition 10.6. Let S be a solid in R3. The rotation group of S is defined
to be the set of all σ ∈ SO(3) such that σ(S) = S. We denote the rotation
group of S by Rot(S).

Proposition 10.22. Let S be a solid in R3. If σ and τ are rotations of S,
then so are στ and σ−1. Hence the rotation group Rot(S) of S is a matrix
group.

Proof. Clearly σ−1 and στ are both in SO(3). It’s also clear that σ−1(S) = S
as well as στ(S) = S. Since I3 ∈ Rot(S), Rot(S) is a matrix group.

Let us now determine the group of rotations of a cube.

Example 10.9. Let S denote the cube with vertices at the points (A,B,C),
where A,B,C = ±1. Let us find Rot(S). Every rotation of R3 which maps
S to itself maps each one of its six faces to another face. Moreover, since any
face contains a basis of R3, each σ ∈ Rot(S) is completely determined by
how it acts on any face. Let F denote one of the faces. Given any one of the
six faces F ′ of S, there is at least one σ such that σ(F ) = F ′. Furthermore,
each face has four rotations, so by Proposition 10.22, so Rot(S) has at least
24 distinct elements.

Next consider the 4 diagonals of S, i.e. the segments which join a vertex
(A,B,C) to (−A,−B,−C). Every rotation of S permutes these segments,
and two rotations which define the same permutation of the diagonals co-
incide (why?). Since the number of permutations of 4 objects is 4! = 24, it
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follows that Rot(S) also has at most 24 elements. Therefore, Rot(S) con-
tains exactly 24 rotations. Moreover, every permutation of the diagonals is
given by a rotation.

Example 10.10. It turns out that it is interesting to know how to define
the rotation which fixes two of the diagonal and keep the other two diagonals
the same. This is because of the general fact every permutation of n objects
can be written as a product of permutations that switch two of the objects
and leave all the others fixed. (Recall that in Chapter 8, we called such
permutations transpositions. In the context of row operations, they are
simply the row swaps.) Let the vertices on the top face of the cube in the
previous example be labelled a, b, c, d in clockwise order looking down, where
a = (1, 1, 1). The diagonals meet the cube in opposite points such as a and
−a. Let’s denote this diagonal by {a,−a}, and denote the other diagonals
in a similar way. Suppose we want to interchange the opposite diagonals
{a,−a} and {c,−c} and leave the other two diagonals fixed. We do this in
two steps. First let H1 be the reflection of R3 through the plane containing
0, a and c = (−1,−1, 1). Clearly H1(S) = S. Next, let H2 be the reflection
of R3 through the xy-plane. That is,

H2

xy
z

 =

 x
y
−z

 .

Since every reflection is orthogonal, H2H1 ∈ O(3,R). Moreover, H2H1(S) =
S. But det(H2H1) = det(H2) det(H1) = (−1)(−1) = 1 since the determi-
nant of the reflection through a hyperplane is −1, so H2H1 ∈ SO(3). Hence
H2H1 is a rotation. You can check that this rotation interchanges the diag-
onals {a,−a} and {c,−c} and fixes the other two diagonals. The line about
which R3 is rotated is easy to find. Since H1 and H2 each leave a plane
pointwise fixed, their product leaves the intersection of these two planes
pointwise fixed. Hence, H2H1 is the rotation of S is about the intersection
of the xy-plane and the plane through the diagonals {a,−a} and {c,−c}.
This is the line x = y, z = 0.

Example 10.11. Consider the set consisting of the midpoints of the 6 faces
of the cube S. The solid polygon S′ determined by these 6 points is called
the regular octahedron. It is a solid with 8 triangular faces all congruent to
each other. The cube and the regular octahedron are two of the 5 Platonic
solids. Since each element of Rot(S) must also send midpoint to another
midpoint, it follows that Rot(S) ⊂ Rot(S′). The other containment clearly
also holds, so we deduce that Rot(S) = Rot(S′).
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Notice that this discussion shows there are exactly 24 3 × 3 orthogonal
matrices of determinant one whose entries are 0 or ±1.
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Exercises

Exercise 10.56. Let S be a regular quadrilateral in R3, that is S has 4 faces
made up of congruent triangles. How many elements does Rot(S) have?

Exercise 10.57. Compute Rot(S) in the following cases:

(a) S is the half ball {x2 + y2 + z2 ≤ 1, z ≥ 0}, and

(b) S is the solid rectangle {−1 ≤ x ≤ 1,−2 ≤ y ≤ 2,−1 ≤ z ≤ 1}.

Exercise 10.58. Suppose H is a reflection of R2. Show that there is a
rotation ρ of R3 such that ρ(x) = H(x) for all x ∈ R2. (Hint: consider the
line H reflects R2 through.)

Exercise 10.59. Prove that there are exactly 24 3× 3 orthogonal matrices
of determinant one whose entries are 0 or ±1.

Exercise 10.60. Compute the number of elements of the rotation group of
a regular tetrahedron S centered at the origin.
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10.6 Summary

The purpose of this chapter was to study inner product spaces, most notably
Rn. We began by showing that if W is any subspace of Rn, then Rn is
the direct sum W ⊕W⊥, where W⊥ is the orthogonal complement to W
consisting of all x ∈ Rn such that x ·w = 0 for all w ∈W . Thus any x ∈ Rn

can be expressed uniquely as x = w + y where w ∈ W and w · y = 0.
Then w is called the projection of x on W or the component of x in W ,
and we write PW (x) = w. We then solved the subspace distance problem
by showing that the minimal distance from x to W is |y|.

The projection PW can be expressed in two ways. One expression has
the form PW = A(AAT )−1AT , where A is any matrix of maximal ranksuch
that col(A) = W . The second expression requires an orthonormal basis, i.e.
a basis of W consisting of mutually orthogonal unit vectors. This expression
is called the projection formula. It uses the Fourier coefficients x ·ui, where
the ui are the orthonormal basis vectors.

Another basic result we proved is that every subspace of Rn has an or-
thonormal basis. Of course, this also holds in any finite dimensional inner
product space. We first gave an existence proof and then wrote down an ex-
plicit method for calculating an orthonormal basis called the Gram-Schmidt
method. Two other topics covered in this Section were pseudo-inverse and
the QR-factorization of a matrix.

Finally, we applied eigentheory to classify the rotations of R3 in the sense
of Euler. These turn out to coincide with the matrix group SO(3) consisting
of all orthogonal matrices of determinant one. After this, we discussed the
rotations of a cube and a regular octahedron both centered at the origin,
showing that each solid has exactly 24 rotations.
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Chapter 11

Unitary Diagonalization
Theorems

The purpose of this Chapter is to classify the unitarily diagonalizable com-
plex matrices. Put another way, we will describe the complex linear trans-
formations admitting a Hermitian orthonormal eigenbasis. The first result
we’ll prove is that every n× n matrix A over C is unitarily triagonalizable.
That is, there exists a unitary matrix U and an upper triangular matrix
T such that A = UTU−1. Since, by the definition of a unitary matrix,
U−1 = UH , where UH = (U)T .

After proving this preliminary result, we’ll introduce the notion of a
normal matrix and show that the normal matrices are exactly the unitar-
ily diagonalizable complex matrices. After that, we’ll discuss self adjoint
operators and the Principal Axis Theorem.

11.1 The Normal Matrix Theorem

Let A be an n × n matrix over C. Then, by the Fundamental Theorem of
Algebra, the characteristic polynomial of A has n complex roots. Recall (see
Proposition 9.13) that we already showed that every complex n× n matrix
A is similar to an upper triangular matrix. We will now show that in fact
there exists a unitary U such that UHAU is upper triangular. This is a the
main step in the classification of unitarily diagonalizable matrices.

Theorem 11.1. Let A be an n × n complex matrix. Then there exists
an n × n unitary matrix U and an upper triangular matrix T so that A =
UTUH = UTU−1.

333
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Proof. We will induct on n. As the result is trivial if n = 1, let us suppose
n > 1 and that Schur’s Theorem is true for all k×k matrices over C whenever
k < n. By the fact that A has n eigenvalues in C, there exists an eigen-
pair (λ1,u1) for A. Applying the Hermitian version of the Gram-Schmidt
process, we may include u1 in a Hermitian orthonormal basis u1,u2, · · · ,un
of Cn. Let U1 = (u1 u2 · · ·un) be the corresponding unitary matrix. By
construction,

AU1 = (Au1 Au2 · · ·Aun) = (λ1u1 Au2 · · ·Aun).

Hence

UH1 AU1 =


uH1
uH2
...

uHn

 (λ1u1 Au2 · · ·Aun) =


λ1uH1 u1 ∗ · · · ∗
λ1uH2 u1 ∗ · · · ∗

...
...

...
λ1uH3 u1 ∗ · · · ∗

 ,

and since u1,u2, · · · ,un are Hermitian orthonormal,

UH1 AU1 =


λ1 ∗ · · · ∗
0 ∗ · · · ∗
...

...
...

0 ∗ · · · ∗

 . (11.1)

Now concentrate on the (n − 1) × (n − 1) matrix in the lower right hand
corner of UH1 AU1, Calling this matrix B, the induction assumption applies
to the (n− 1)× (n− 1) matrix B in the lower right hand corner of UH1 AU1,
so there exists an (n− 1)× (n− 1) unitary matrix U ′ so that (U ′)HBU ′ is
an upper triangular matrix, say T . The matrix

U2 =


1 0 · · · 0
0
... U ′

0


is obviously unitary, and

UH2 (UH1 AU1)U2 =


λ1 ∗ · · · ∗
0
... T
0

 .
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Since T is upper triangular, UH2 (UH1 AU1)U2 is also upper triangular. We
are therefore done if U = U1U2 is unitary. But , by Proposition 10.15, the
product of two unitary matrices is unitary, so indeed A has been put into
upper triangular form by a unitary matrix. This completes the induction
step, so the Theorem is proven.

11.1.1 Normal Matrices and the Main Theorem

We will now prove the Normal Matrix Theorem.

Definition 11.1. A matrix N ∈ Cn×n is said to be normal if and only if

NNH = NHN. (11.2)

The Normal Matrix Theorem goes as follows.

Theorem 11.2. A matrix A ∈ Cn×n is unitarily diagonalizable if and only
if A is normal.

Proof. The only if part of the Theorem is straightforward and is left as an
exercise. Suppose A is normal. By Schur’s Theorem, we can write A =
UTUH , where U is unitary and T is upper triangular. Since AHA = AAH

and U is unitary, it follows that TTH = THT (why?). Hence we need to
show that an upper triangular normal matrix is diagonal. The key is to
compare the diagonal entries of TTH and TTH . Let tii be the ith diagonal
entry of T , and let ai denote the ith column of T . Now the diagonal entries
of THT are |a1|2, |a2|2, . . . , |an|2. On the other hand, the diagonal entries
of THT are |t11|2, |t22|2, . . . , |tnn|2. Therefore, |ai|2 = |tii|2 for each i, so
T is diagonal. It follows that A is unitarily diagonalizable, so the proof is
complete.

The reader should note also that if A ∈ Cn×n is unitarily diagonalizable,
then so is AH .

11.1.2 Examples

Let us now give some examples of normal matrices. Clearly, all real symmet-
ric matrices are normal. A more general class of normal matrices is obtained
by considering matrices K such that KH = K.

Example 11.1 (Hermitian Matrices). A matrix K ∈ Cn×n such that KH =
K is called Hermitian. Clearly the diagonal of a Hermitian matrix is real.
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Notice that a real Hermitian matrix is just a symmetric matrix. For example,
the matrix

K =

 0 1 + i −i
1− i 0 2
i 2 0


is Hermitian. Its characteristic polynomialis pK(λ) = −λ3 + 7λ − 4. This
polynomial has 3 real roots, but they are difficult to express.

The following Proposition gives a useful fact about both Hermitian and
symmetric matrices.
Proposition 11.3. A matrix K ∈ Cn×n is Hermitian if and only if K is
normal and all its eigenvalues are real. In particular, all eigenvalues of a real
symmetric matrix are real.

Proof. Suppose K is Hermitian. Then we can write K = UDUH , with
U unitary and D diagonal. Since K = KH = UDHUH , it follows that
DH = D, so D is real. Hence all eigenvalues of K are real. Conversely, if K
is normal with real eigenvalues, we can write K = UDUH as above with D
real. Thus KH = K, so K is Hermitian.

One can also obtain other classes of normal matrices by writing A =
UDUH and imposing conditions on the form of the eigenvalues, i.e. on D.

Example 11.2 (Skew Symmetric Matrices). A matrix J is said to be skew
Hermitian iff iJ is Hermitian. Since Hermitian matrices are normal, so are
skew Hermitian matrices. Also, the nonzero eigenvalues of a skew Hermitian
matrix are purely imaginary, i.e. they have the form iλ for a nonzero λ ∈ R.
A real skew Hermitian matrix is called skew symmetric. Thus a real matrix
S is skew symmetric if and only if ST = −S. For example,

J =
(

0 1
−1 0

)
and S =

 0 1 2
−1 0 2
−2 −2 0


are both skew symmetric. The diagonal entries of a skew symmetric matrix
are zero, so the trace of a skew symmetric is also zero. The determinant of
a skew symmetric matrix of odd order is also 0 (see Exercise 11.1 below).
Thus a skew symmetric matrix of odd order has 0 as an eigenvalue. But
as the matrix J in the above example shows, the determinant of a skew
symmetric matrix of even order needn’t be zero.

The characteristic polynomial of the matrix S above is −λ3 − 9λ, so
the eigenvalues of S are 0,± 3i, confirming the observation in the previous



337

example that all nonzero eigenvalues of a skew Hermitian matrix are purely
imaginary. Moreover, the eigenvalues of S are also conjugate since S is a
real matrix.

The Normal Matrix Theorem 11.2 enables us to deduce the following

Proposition 11.4. Suppose A ∈ Rn×n is skew symmetric matrix and n is
even, say n = 2m, and suppose 0 is not an eigenvalue of A. Then there
exists an orthonormal basis x1, y1, . . . ,xm, ym of Rn such that A sends
each real two-plane Rxk + Ryk onto itself, and the matrix of A on this two
plane has the form

Jk =
(

0 λk
−λk 0

)
,

where λk ∈ R is a nonzero real number such that iλk is an eigenvalue of A.
(This basis is not necessarily unique, however.)

Proof. Choose a Hermitian orthonormal basis of Cn consisting of eigenvec-
tors of A. Since A is real, its eigenvalues occur in conjugate pairs, so as 0
is not an eigenvalue, the eigenvalues can be sorted into pairs ± iλk, where
λk is a nonzero real number and k varies from 1 to m. This sorts the above
basis into pairs uk and u′k where, say, Auk = iλkuk, and Au′k = −iλku′k. In
fact, since A is real, we can assume u′k = uk. Since λ 6= 0, the uj and the
uk are mutually Hermitian orthogonal. Now, let xk = (uk + uk)/

√
2 and

yk = i(uk − uk)/
√

2. Clearly xk and yk are real; that is, they lie in Rn.
Moreover, the xj and yk are mutually orthogonal, as one can check using
the fact that the uj and the uk are mutually Hermitian orthogonal. By a
direct computation, Axk = −λkyk, and Ayk = λkxk. Hence we have the
result.

This Proposition shows that the 2×2 matrix Jλ =
(

0 λ
−λ 0

)
determines

how nonsingular skew symmetric matrices of even order are produced. If
zero is allowed to be an eigenvalue, the only change is that some of the λ
are zero. The general 2m× 2m skew symmetric matrix S can be thought of
as being orthogonally similar to a direct sum of matrices of this type. That
is, there exist λ1, . . . , λm such that

S = Qdiag(Jλ1 , . . . , Jλm)QT ,

for some orthogonal Q, where diag(Jλ1 , . . . , Jλm) is the 2m×2m matrix with
the Jλi

s down the diagonal and zeros elsewhere.
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If S ∈ Rn×n is skew symmetric, then its characteristic polynomialpS(x)
has the property that

pS(x) = pST (x) = p−S(x) = (−1)npS(−x).

Thus if n is even, pS(x) is an even polynomial in the sense that pS(−x) =
pS(x). This is equivalent to the property that only even powers of x occur.
Similarly, if n is odd, then pS(−x) = −pS(x), and pS(x) is an odd polyno-
mial: only odd powers of x occur. In particular, pS(0) = −pS(0), so 0 is an
eigenvalue of S as claimed above.

Another condition on the eigenvalues is that they all have modulus one.
This leads to the following example.

Example 11.3. Let A = UDUH , where every diagonal entry of D is a unit
complex number. Then D is unitary, hence so is A. Conversely, every uni-
tary matrix is normal and the eigenvalues of a unitary matrix have modulus
one (see Exercise 11.3), so the unitary matrices are exactly the normal ma-
trices such that every eigenvalue has modulus one. For example, the skew
symmetric matrix

J =
(

0 −1
1 0

)
is orthogonal, hence unitary. J has eigenvalues ±i, and we can easily com-
pute that Ei = C(1,−i)T and E−i = C(1, i)T . Thus

J = U1DU
H
1 =

1√
2

(
1 1
i −i

)(
−i 0
0 i

)
1√
2

(
1 −i
1 i

)
.

The basis constructed in the above Proposition is u1 =
1√
2

(
1
i

)
and u′1 =

1√
2

(
1
−i

)
. The way U acts as a complex linear transformation of C2 can

be interpreted geometrically as follows. U rotates vectors on the principal
axis C(1, i)T spanned by (1, i)T (thought of as a real two plane) through π

2
and rotates vectors on the orthogonal principal axis by −π

2 . Of course, as a
transformation on R2, U is simply the rotation Rπ/2.
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Exercises

Exercise 11.1. Unitarily diagonalize the skew symmetric matrix J of Ex-
ample 11.2.

Exercise 11.2. Let S be a skew Hermitian n×nmatrix. Show the following:

(i) If n is odd, then det(S) is pure imaginary, and if n is even, then
det(S) is real.

(ii) If S is skew symmetric, then det(S) = 0 if n is odd, and det(S) ≥ 0
if n is even.

Exercise 11.3. Let U be any unitary matrix. Show that:

(i) every eigenvalue of U also has modulus 1, and

(ii) det(U) has modulus 1.

Exercise 11.4. Suppose A is skew Hermitian. Show that eA is unitary.

Exercise 11.5. Suppose Q be an orthogonal n×n real matrix with no real
eigenvalues. True or False: det(Q) = 1.

Exercise 11.6. Suppose all eigen-values of of a unitary matrix Q are 1.
True or false: Q = In.

Exercise 11.7. Are all complex matrices normal?

Exercise 11.8. Let N (n) ⊂ Cn×n be the set of normal n × n complex
matrices. Is N (n) a subspace of Cn×n?

Exercise 11.9. Formulate the notion of a normal operator on a Hermitian
inner product space.

Exercise 11.10. Which of the following statements are always true, which
are sometimes true and which are always false? Discuss your reasoning.

(i) If A is normal and U is unitary, the UAUH is normal.

(ii) If A is normal and invertible, then A−1 is normal.

(ii) If A is normal and k is a positive integer, then Ak is normal.

(iv) If A ∈ Rn×n is invertible, the every eigenvalue of ATA is positive.

(v) If A ∈ Rn×n, then AAT and ATA have the same eigenvalues.

(vi) If A is skew symmetric, eA is orthogonal.

Exercise 11.11. Show that if A and B are normal and AB = BA, then
AB is normal.
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11.2 The Principal Axis Theorem

The purpose of this Section is to discuss the Principal Axis Theorem for
matrices. This is one of the most classical results in linear algebra. Of
course, the Theorem itself is almost an immediate consequence of the Normal
Matrix Theorem, but it also has some other aspects which we will mention,
such as the fact that every symmetric (or more generally, Hermitian) matrix
is a linear combination of projection matrices. A more geometric treatment
will be given in the next Section, where the notion of a Hermitian matrix is
finally given a geometric interpretation.

Theorem 11.5 (Matrix version). Let A ∈ Cn×n be Hermitian. Then there
exist real numbers λ1, . . . , λn and Hermitian orthonormal u1, . . . ,un such
that each (λi,ui) is an eigenpair for A. Consequently, A is unitarily diago-
nalizable. More precisely,

A = UDU−1 = UDUH ,

where U =
(
u1 . . . un

)
and D = diag(λ1, . . . , λn). If A is real, hence

symmetric, then there exists a real orthogonal Q such that

A = QDQ−1 = QDQT .

Hence any real symmetric matrix is orthogonally diagonalizable.

Proof. The Hermitian case follows immediately from the Normal Matrix
Theorem. For the symmetric case, we need to prove that U may be chosen
to be real. Examining the proof of Schur’s Theorem, we see that since the
eigenvalues of a symmetric A are real, we may assume that the unitary
matrix U such that UHAU is upper triangular may in fact be taken to be
orthogonal. For this we have to know that the product of two orthogonal
matrices is orthogonal. Thus there exists an orthogonal matrix Q such that
QTAQ is a real diagonal matrix D. Therefore, A = QDQ−1 = QDQT , so
any real symmetric matrix can be orthogonally diagonalized.

Note that the converse of the Principal Axis Theorem is also true. Any
matrix of the form UDU−1, where U is unitary and D is real diagonal is
Hermitian, and any matrix of the form QDQ−1, where Q is orthogonal is
symmetric.

The principal axes are of course the lines spanned by orthonormal the
eigenbasis vectors. In the Hermitian case, they are copies of C, and hence
are actually real two planes.
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One of the simple consequences of the Principal Axis Theorem is that
any two eigenspaces of a Hermitian matrix which correspond to two different
eigenvalues are Hermitian orthogonal. In particular, distinct eigenvalues
of a real symmetric matrix have orthogonal eigenspaces. The reader can
also deduce this directly from the definition of a Hermitian or self adjoint
operator.

11.2.1 Examples

Example 11.4. Let H denote a 2× 2 reflection matrix. Then H has eigen-
values ±1. Either unit vector u on the reflecting line together with either
unit vector v orthogonal to the reflecting line form an orthonormal eigen-
basis of R2 for H. Thus Q = (u v) is orthogonal and

H = Q

(
1 0
0 −1

)
Q−1 = Q

(
1 0
0 −1

)
QT .

Note that there are only four possible choices for Q. All 2 × 2 reflection
matrices are similar to diag[1,−1]. The only thing that can vary is Q.

Here is another example.

Example 11.5. Let B be 4 × 4 the all ones matrix. The rank of B is
one, so 0 is an eigenvalue and N (B) = E0 has dimension three. In fact
E0 = (R(1, 1, 1, 1)T )⊥. Another eigenvalue is 4. Indeed, (1, 1, 1, 1)T ∈ E4,
so we know there exists an eigenbasissince dimE0 + dimE4 = 4. To pro-
duce an orthonormal basis, we simply need to find an orthonormal basis of
E⊥0 . We will do this by inspection rather than Gram-Schmidt, since it is
easy to find vectors orthogonal to (1, 1, 1, 1)T . In fact, v1 = (1,−1, 0, 0)T ,
v2 = (0, 0, 1,−1)T , and v3 = (1, 1,−1,−1)T give an orthonormal basis af-
ter we normalize. We know that our fourth eigenvector, v4 = (1, 1, 1, 1)T ,
is orthogonal to E0, so we can for example express B as QDQT where
Q =

(
v1√

2
v2√

2
v3
2

v4
2

)
and

D =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 4

 .
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11.2.2 A Projection Formula for Symmetric Matrices

One of the nice applications of the Principal Axis Theorem is that it enables
us to express any symmetric matrix as a linear combination of orthogo-
nal projections. For example, suppose A ∈ Rn×n is symmetric, and let
u1, . . . ,un be an orthonormal eigenbasis of Rn for A. Also, let λi denote the
eigenvalue for ui. Then, if x ∈ Rn, the projection formula (10.8) allows us
to write

x = (uT1 x)u1 + · · ·+ (uTnx)un.

Hence
Ax = λ1(uT1 x)u1 + · · ·+ λn(uTnx)un.

Thus
A = λ1u1uT1 + · · ·+ λnunuTn . (11.3)

Since uiuTi is the matrix of the projection of Rn onto the line Rui, the
identity (11.3) indeed expresses A as a linear combination of orthogonal
projections. This formula holds in the Hermitian case as well.

This formula can also be put in a more elegant form. If µ1, . . . , µk are
the distinct eigenvalues of A, then

A = µ1PEµ1
+ µ2PEµ2

+ · · ·+ µkPEµk
. (11.4)

For example, in the case of the all ones matrix of Example 11.5,

A = 0PE0 + 4PE4 .
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Exercises

Exercise 11.12. Let V be a real finite dimensional inner product space.
Show that a linear transformation T : V → V is self adjoint if and only if
the matrix of T with respect to an arbitrary orthonormal basis is symmetric.
Formulate and prove the corresponding result for the Hermitian case.

Exercise 11.13. Show directly from the definition of self adjointness that
all eigenvalues of a self adjoint operator are real.

Exercise 11.14. Orthogonally diagonalize the following matrices:1 0 1
0 1 0
1 0 1

 ,

1 1 3
1 3 1
3 1 1

 ,


1 0 1 0
0 1 0 1
1 0 1 0
0 1 0 1

 .

I claim that you can diagonalize the first and third matrices without pencil
and paper. You can also find an eigenvalue of the second by inspection.

Exercise 11.15. Show directly from the definition that the eigenspaces for
different eigenvalues of a self adjoint operator are mutually orthogonal.

Exercise 11.16. Consider the 2× 2 real symmetric matrix A =
(
a b
b c

)
.

(i) Show directly that both roots of the characteristic polynomialof A
are real.

(ii) Prove that A is orthogonally diagonalizable without appealing to the
Principal Axis Theorem.

Exercise 11.17. Suppose B is a real, symmetric 3 × 3 matrix such that
(1, 0, 1)T ∈ Null(B−I3), and (1, 1, −1)T ∈ Null(B−2I3). If det(B) = 12,
find B.

Exercise 11.18. Answer either T or F. If T, give a brief reason. If F, give
a counter example.

(a) The sum and product of two symmetric matrices is symmetric.

(b) For any real matrix A, the eigenvalues of ATA are all real.

(c) For A as in (b), the eigenvalues of ATA are all non negative.

(d) If two symmetric matrices A and B have the same eigenvalues, count-
ing multiplicities, then A and B are orthogonally similar (A = QBQT where
Q is orthogonal).
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Exercise 11.19. Suppose A is a 3×3 symmetric matrix such that the trace

of A is 4, the determinant of A is 0, and v1 =

1
0
1

 and v2 =

1
1
1

 are

eigenvectors of A which lie in the image of TA.

(i) Find the eigenvalues of A.

(ii) Find the eigenvalues corresponding to v1 and v2.

(iii) Finally, find A itself.

Exercise 11.20. Recall that two matrices A and B with a common eigen-
basis commute. Conclude that if A and B have a common eigenbasis and
are symmetric, then AB is symmetric.

Exercise 11.21. Suppose A, B and AB are symmetric. Show that A and
B are simultaneously diagonalizable.

Exercise 11.22. Show that if N is normal, then N and NH are simultane-
ously diagonalizable.

Exercise 11.23. Let W be a subspace of Rn. Show that the projection PW
is self adjoint.

Exercise 11.24. Let W be a hyperplane in Rn, and let H be the reflection
through W . Show that H is self adjoint; and explicitly describe how to
orthogonally diagonalize its matrix.

Exercise 11.25. Let W be a subspace of Rn. Simultaneously orthogonally
diagonalize PW and PW⊥ .

Exercise 11.26. * Diagonalizea b c
b c a
c a b

 ,

where a, b, c are all real. (Note that the second matrix in Problem 1 is of
this type.) What does the fact that the trace is an eigenvalue say?

Exercise 11.27. * Diagonalize

A =


aa ab ac ad
ba bb bc bd
ca cb cc cd
da db dc dd

 ,

where a, b, c, d are arbitrary real numbers. (Note: thimk!)
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Exercise 11.28. Prove that a real symmetric matrix A whose only eigen-
values are ±1 is orthogonal.

Exercise 11.29. Suppose A ∈ Rn×n is symmetric. Show the following.

(i) N (A)⊥ = im(A).

(ii) im(A)⊥ = N (A).

(iii) col(A) ∩N (A) = {0}.

(iv) Conclude form (iii) that if Ak = O for some k > 0, then A = O.

Exercise 11.30. Give a direct proof of the Principal Axis Theorem in the
2× 2 Hermitian case.

Exercise 11.31. Show that two symmetric matrices A and B having the
same characteristic polynomial are orthogonally similar. In other words,
A = QBQ−1 for some orthogonal matrix Q.

Exercise 11.32. Let A ∈ Rn×n be symmetric, and let λm and λM be its
minimum and maximum eigenvalues respectively.

(a) Use formula (11.3) to show that for every x ∈ Rn, we have

λmxTx ≤ xTAx ≤ λMxTx.

(b) Use this inequality to find the maximum and minimum value of |Ax|
on the ball |x| ≤ 1.

(c) Show that if A ∈ Rn×n is symmetric, then the maximum and mini-
mum values of xTAx for |x| = 1 are eigenvalues of A.

Exercise 11.33. Show that if Q ∈ Rn×n is orthogonal and symmetric, then
Q2 = In. Moreover, if 1 is not an eigenvalue of Q, then Q = −In.

Exercise 11.34. Find the eigen-values of K =
(

2 3+4i
3−4i −2

)
and diagonalize

K.

Exercise 11.35. Unitarily diagonalize Rθ =
(

cos θ − sin θ
sin θ cos θ

)
.

Exercise 11.36. Show that the trace and determinant of a Hermitian ma-
trix are real. In fact, show that the characteristic polynomial of a Hermitian
matrix has real coefficients.

Exercise 11.37. Prove that the Hermitian matrices are exactly the complex
matrices with real eigen-values that can be diagonalized using a unitary
matrix.
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Exercise 11.38. Show that U(n) is a matrix group, and give a description
of U(2).

Exercise 11.39. What is the relationship between U(1) and SO(2)?

Exercise 11.40. Show that two unit vectors in Cn coincide if and only if
their Hermitian inner product is 1.

Exercise 11.41. Consider a 2 × 2 unitary matrix U such that one of U ’s
columns is in R2. Is U orthogonal?

Exercise 11.42. Supppose W is a complex subspace of Cn. Show that the
projection PW is Hermitian.

Exercise 11.43. How does one adjust the formula PW = A(AAT )−1AT to
get the formula for the projection of a complex subspace W of Cn?
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11.3 Diagonalization of Self Adjoint Operators

The Principal Axis Theorem says that every Hermitian matrix is unitarily
diagonalizable. This is, of course, a special case of the Normal Matrix The-
orem. On the other hand, since Hermitian matrices are quite fundamental,
we will make some additional comments. In particular, we will give the
operator theoretic meaning of the Hermitian condition.

11.3.1 Self Adjoint Operators

Let V be either a real or Hermitian inner product space. Consider a linear
transformation T : V → V such that

(T (x),y) = (x, T (y))

for all x,y ∈ V . In the real case, we will say T is self adjoint , and in the
complex case, we will say T is Hermitian self adjoint, or, for brevity, that T
is a Hermitian operator.

Suppose, to begin, that V = Rn. Here, self adjoint operators turn out
to be very familiar objects.

Proposition 11.6. A linear transformation T : Rn → Rn is self adjoint if
and only if T = TA, where A is symmetric.

Proof. We will leave this as an exercise.

Similarly, in the Hermitian case we have

Proposition 11.7. A linear transformation T : Cn → Cn is Hermitian self
adjoint if and only if the matrix of T is Hermitian.

Proof. This is also an exercise.

In a general, if V is a finite dimensional inner product space, then a
linear transformation T : V → V is self adjoint if and only if the matrix of
T with respect to an orthonormal basis of V is Hermitian, in the complex
case, and symmetric, in the real case. It is not hard to show directly from
the definition that all eigenvalues of a self adjoint operator are real.

11.3.2 The Geometry of Self Adjointness

The geometric meaning of the condition that a linear transformation is self
adjoint is summed up in the following.
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Proposition 11.8. Suppose T : V → V is a self adjoint linear transforma-
tion on a finite dimensional inner product space V . Then:

(i) if W is a subspace such that T (W ) ⊂W , then T (W⊥) ⊂W⊥; and

(ii) the image im(T ) of T is ker(T )⊥.

Proof. For (i), let x ∈ W and y ∈ W⊥. Since T (x) ∈ W , (T (x),y) = 0.
But (x, T (y)) = (T (x),y), so (x, T (y)) = 0. Since x is arbitrary, it follows
that T (y) ∈ W⊥, so (i) is proved. For (ii), let W = ker(T ). I claim that
im(T ) ⊂W⊥. Indeed, if y = T (x) and w ∈W , then (w,y) = (T (w),x) = 0
since T (w) = 0. By Proposition 10.1,

dimV = dimW + dimW⊥.

We also know from Theorem 7.17 that

dimV = dim ker(T ) + dim im(T ).

Hence, dim im(T ) = dim ker(T )⊥. But im(T ) ⊂W⊥, so (ii) is proven.

Let us next return to a couple of familiar examples.

Example 11.6. Let W be a subspace of Rn. Then the projection PW is
self adjoint. In fact, we know that its matrix with respect to the standard
basis has the form C(CCT )−1CT , which is clearly symmetric. Another way
to see the self adjointness is to choose an orthonormal basis u1, . . . ,un of
Rn so that u1, . . . ,um span W . Then, by the projection formula, PW (x) =∑k

i=1(x · ui)ui. It follows immediately that PW (ui) · uj = ui · PW (uj) for
all indices i and j, and this implies PW is self adjoint.

11.3.3 Another Proof of the Principal Axis Theorem

We will now give a proof of the Principal Axis Theorem which takes advan-
tage of the geometric properties of self adjoint operators.
Theorem 11.9. Let V be a Hermitian finite dimensional inner product
space, and let T : V → V be self adjoint. Then there exists an Hermitian
orthonormal eigenbasis Q of V consisting of eigenvectors of T . Thus T is
semi-simple, and the matrix MQ

Q(T ) is diagonal.

Proof. Just as in the first proof, we will induct on dimV . The case dimV =
1 is clear, so suppose the theorem is true if dimV = k whenever k < n,
where n > 1. Let (λ,w) be an eigenpair for T , where w is a unit vector, and
put W = Cw. Obviously, T (W ) ⊂ W , so the previous Proposition implies
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that T (W⊥) ⊂ W⊥. Thus, T defines a self adjoint operator on W⊥. But
dimW⊥ = dimV −1, so, by induction, W⊥ admits an orthonormal eigenba-
sis. Combining this orthonormal basis of W⊥ with w gives n orthonormal
elements of V , hence an orthonormal basis of V . This gives the sought after
eigenbasis of V for T , so the induction proof is done.

Note that one can deduce that the eigenvalues of a Hermitian self adjoint
map T are real directly from the self adjointness condition (T (x),x) =
(x, T (x)). The proof of the Principal Axis Theorem in the real case is just
the same, except that one needs to use the additional fact just mentioned
the eigenvalues of a real self adjoint operator are real.

Example 11.7. Consider the linear transformation T : Rn×n → Rn×n de-
fined by T (A) = AT . (This is indeed a linear transformation.) Recall that
the inner product is given by (A,B) = Trace(ATB).

I claim T is self adjoint. In other words, we claim that (AT , B) =
(A,BT ) for all A,B. To see this directly, one has to show Trace(AB) =
Trace(ATBT ), which we leave as an exercise.

Another way to show T is self adjoint is to show that it admits an
orthonormal eigenbasis. Notice that since T 2 = Im, where m = n2, the
eigenvalues of T are plus and minus one. Such an orthonormal eigenbasis
consists of the symmetric matrices Eii and (Eij +Eji)/

√
2 where i 6= j, and

the skew symmetric matrices (Eij−Eji)/
√

2 for i 6= j. This shows that every
real matrix can be expressed uniquely as the sum of a symmetric matrix and
a skew symmetric matrix. (This fact was proved over an arbitrary field of
characteristic different from two in Chapter 7.)

11.3.4 An Infinite Dimensional Self Adjoint Operator

We now give an example of a self adjoint operator (i.e. linear transfor-
mation) in an infinite dimensional context. Such self adjoint operators are
frequently encountered in mathematical, as well as physical, problems. Note
that although our finite dimensional methods don’t help in finding eigenval-
ues in the infinite dimensional case, it is still true, by the same argument,
that the eigenvalues of a self adjiont operator are real.

Our inner product space will be a certain subspace of function space
C[0, 2π], the continuous functions f : [0, 2π] → R with the usual inner
product

(f, g) =
∫ 2π

0
f(x)g(x)dx.
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A linear transformation T : C[0, 2π] → C[0, 2π] is self adjoint if and only if
(Tf, g) = (f, Tg) for all f, g, that is∫ 2π

0
T (f)(x)g(x)dx =

∫ 2π

0
f(x)T (g)(x)dx.

Consider the subspace P of C[0, 2π] consisting of all the functions f which
have derivatives of all orders on [0, 2π] and satisfy the condition that

f (i)(0) = f (i)(2π) if i = 0, 1, 2, . . . ,

where f (i) denotes the ith derivative of f . These functions can be viewed as
the smooth functions on the unit circle. Among them are the trigonometric
functions cosλx and sinλx, where λ ∈ R. We will show below that P is
infinite dimensional.

Our aim is to give an example of a self adjoint operator on P. By
definition, if f ∈ P, then f (i) ∈ P for all i ≥ 1. Hence the ith derivative
operator Di(f) = f (i) is a linear transformation Di : P → P for all i > 0.
I claim the second derivative operator D2(f) = f ′′ is self adjoint. This is
shown using integration by parts. For

(D2(f), g) =
∫ 2π

0
f ′′(t)g(t)dt

= f ′(2π)g(2π)− f ′(0)g(0)−
∫ 2π

0
f ′(t)g′(t)dt.

But by the definition of P, f ′(2π)g(2π)− f ′(0)g(0) = 0, so

(D2(f), g) = −
∫ 2π

0
f ′(t)g′(t)dt.

Since this expression for (D2(f), g) is symmetric in f and g, it follows that

(D2(f), g) = (f,D2(g)),

so D2 is self adjoint, as claimed.
Since D2 is self adjoint, one is naturally curious about its eigenvalues. In

general, there is no method for finding the eigenvalues of a linear operator
on an infinite dimensional space. Certainly, the characteristic polynomi-
aldoesn’t make sense in this setting. But one can easily see that the trig
functions cosλx and sinλx are eigenfunctions for −λ2 if λ 6= 0. In fact, by a
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general theorem in differential equations, if µ ≥ 0, then any solution of the
equation

D2(f) + µf = 0

has the form f = a cos
√
µx + b sin

√
µx for some a, b ∈ R. (Note that

although D2(x) = 0, x 6∈ P.)
Thus, D2 is a self adjoint operator on P such that every non positive real

number λ is an eigenvalue. The corresponding eigenspaces are E0 = R and
E−λ = R cos

√
λx+ R sin

√
λx if λ > 0. There are some other consequences

too. For example, if λ1, . . . λk > 0 and fi ∈ E−λ2
i
, then f1, . . . , fk are

linearly independent (in fact, orthogonal): it cannot be spanned by finitely
many functions. Therefore, as mentioned above, P is infinite dimensional.
Furthermore, by Exercise 11.15, distinct eigenvalues of a self adjoint linear
operator have orthogonal eigenspaces. Hence if fλ and fµ are eigenfunctions
for −λ2 6= −µ2, then ∫ 2π

0
fλ(t)fµ(t)dt = 0,

where fλ and fµ are any eigenfunctions for −λ and −µ respectively. In
particular, we can conclude∫ 2π

0
sin

√
λt sin

√
µtdt = 0,

with corresponding identities for the other pairs of eigenfunctions fλ and fµ.
In addition, cos

√
λx and sin

√
λx are also orthogonal.

After normalization, we also obtain an orthonormal set

1√
2π
,

1√
π

cos
√
λx,

1
π

sin
√
λx,

in P. In Fourier analysis, one considers the eigenfunctions cos
√
λx and

sin
√
λx, where λ is a positive integer. The Fourier series of a function

f ∈ C[0, 2π] such that f(0) = f(2π) is the infinite series

1
π

∞∑
m=1

am cosmx+
1
π

∞∑
m=1

bm sinmx, (11.5)

where am and bm are the Fourier coefficients encountered in §33. In partic-
ular,

am =
1√
π

∫ 2π

0
f(t) cosmtdt
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and

bm =
1√
π

∫ 2π

0
f(t) sinmtdt.

The basic question is in what sense (11.5) represents f . For this, we refer
to a text on Fourier series. Note that the sum F of a finite number of terms
of (11.5) give the projection of f onto a corresponding finite dimensional
subspace of P. This amounts to minimizing the integral

∫ 2π
0 (f − F )2dt,

where F is varies through the corresponding subspace.
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Exercises

Exercise 11.44. Show that if V is a finite dimensional inner product space,
then T ∈ L(V ) is self adjoint if and only if for every orthonormal basis
u1, . . . ,un OF V , (T (ui),uj) = (ui, T (uj)) for all indices i and j.

Exercise 11.45. Let U and V be inner product spaces of the same dimen-
sion. Show that a linear transformation Φ : U → V is an isometry if and
only if Φ carries some orthonormal basis of U onto an orthonormal basis of
V .

Exercise 11.46. Suppose Φ : R2 → R2 is an arbitrary isomorphism. Show
there exist a pair of inner products on R2 such that Φ is an isometry.

Exercise 11.47. Find a one to one correspondence between the set of all
isometries Φ : R2 → R2 and O(2,R).

Exercise 11.48. Let U be an inner product space. Show that the matrix
of an isometry Φ : U → U with respect to an orthonormal basis is orthog-
onal. Conversely show that if B is an orthonormal basis of U , then every
orthogonal matrix Q defines an isometry Φ on U such that Q = Mβ

β(Φ).

Exercise 11.49. Give the proof of Propositions 11.6 and 11.7.

Exercise 11.50. Show how to reduce the proof of the Principal Axis The-
orem (Theorem 11.9) to the case of a symmetric n × n matrix by choosing
an isometry Φ : V → Rn (n = dimV ).

Exercise 11.51. Let V = Rn×n and recall the transpose transformation
T : V → V defined by T(A) = AT (see Exercise 9.35). Show that there
exists an inner product on V for which T is self adjoint.

Exercise 11.52. Using the notation of Exercise 11.51, find an orthonormal
basis B of V such that the matrix of T with respect to B is symmetric.

Exercise 11.53. Let V be a finite dimensional inner product space with
inner product ( , ), and suppose T : V → V is linear. Define the adjoint of
T to be the map T ∗ : V → V determined by the condition that

(T ∗(x),y) = (x, T (y))

for all x,y ∈ V .

(i) Show that the adjoint T ∗ is a well defined linear transformation.

(ii) If V = Rn, find the matrix of T ∗.
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Exercise 11.54. Find the first six coefficients a0, a1, a2 and b0, b1, b2 in the
Fourier expansion of sin2 x. Explain the significance of the approximation
of sin2 x these coefficients give.

Exercise 11.55. Show that the functions eimx, m = 0,±1,±2, . . . form an
orthogonal set. What is the associated orthonormal set?
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11.4 Summary

The object of this chapter is to classify the unitarily diagonalizable complex
matrices. First of all, we show that every real and complex square matrix
is similar to an upper triangular matrix via a unitary matrix. In partic-
ular, if V is a finite dimensional Hermitian inner product space, then any
linear transformation T : V → V admits a Hermitianorthonormal basis for
which T ’s matrix is upper triangular. This is used to give a simple proof
of the Normal Matrix Theorem, which says every normal matrix is unitar-
ily diagonalizable, where a matrix N is said to be normal if and only if
NHN = NNH . A matrix A ∈ Cn×n is Hermitian if and only if AH = A, so
we immediately conclude the Principal Axis Theorem, which tells us that
every Hermitian matrix is unitarily diagonalizable, and, moreover, any real
Hermitian matrix, that is any symmetric matrix, is orthogonally diagonal-
izable. Among the other classes of matrices which are normal are unitary
matrices, orthogonal matrices, skew symmetric and skew Hermitian matri-
ces.

The geometric interpretation of a Hermitian matrix is a self adjoint op-
erator. We give a geometric proof of the Principal Axis Theorem using this
interpretation. We also give an example of a self adjoint operator in an
infinite dimensional setting.
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Chapter 12

Some Applications of
Eigentheory

The purpose of this Chapter is to present an assortment of results and ap-
plications of eigentheory. For real symmetric matrices, we will study the
notion of a quadratic form, prove Sylvester’s Theorem and classify positive
definite matrices. Quadratic forms arise in many mathematical contexts,
but the one most students encounter first is in answering the question of
whether a critical point of a function of several variables gives a maximum
or minimum. By a local study of the behavior of a function all of whose
partial derivatives vanish at a point p (i.e. p is a critical point), we arrive at
the second derivative test, which rests on the critierion for a real symmetric
matrix to be positive definite. In the second section, we give a brief intro-
duction to graph theory and show how a symmetric matrix is associated to
a graph. In the third section, we study the QR-algorithm and the power
method, which two well known methods for approximating eigenvalues. We
also discuss why the QR-algorithm converges.

12.1 Quadratic Forms

12.1.1 The Definition

Polynomials in several variables are the most important class of functions
in algebra. Of course, linear functions are encountered throughout linear
algebra. They make up the most basic class of of polynomials. The next
most important class is the polynomials in which every term has degree two.
Such a polynomial is called a quadratic form. An arbitrary quadratic form

357



358

over a field F is a polynomial of the form

q(x1, . . . , xn) =
n∑

i,j=1

hijxixj , (12.1)

where each hij ∈ F. Notice that since xixj = xjxi, putting

qij = 1/2(hij + hji)

gives another expression for q where the coefficients are symmetric in the
sense that qij = qji for all indices i, j.

The following Proposition points to the connection with symmetric ma-
trices.

Proposition 12.1. For every quadratic form q over F, there exists a unique
symmetric matrix A ∈ Fn×n such that

q(x) = xTAx,

for all x ∈ Fn. Conversely, every symmetric matrix A ∈ Fn×n defines a
unique quadratic form over F by q(x) = xTAx.

Proof. This is left as an exercise.

12.1.2 Critical Point Theory

Suppose f(x1, . . . , xn) is a smooth real valued function which has a critical
point at r ∈ Rn. That is,

∂f

∂xi
(r) = 0

for all i. The Hessian Hf at r is defined to be the symmetric n× n matrix

Hf =
1
2
( ∂2f

∂xi∂xj
(r)
)
.

One of the basic results in critical point theory says that if xTHfx > 0 for
all nonzero x ∈ Rn, then f has a local minimum at r. The contribution
of linear algebra is to provide the theorem which classifies when a general
quadratic form q satisfies q(x) > 0 if x 6= 0 (see Proposition 12.6). In critical
point theory, this result is called the second derivative test. The following
example is a preview of the general result.
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Example 12.1. Consider the function f(x, y) = ax2 + 2bxy + cy2, where
a, b, c ∈ R. The origin is a critical point, and Hf at (0, 0) is

Hf =
(
a b
b c

)
.

Note that f is just the quadratic form associated to Hf . The second deriva-
tive test says that if det(Hf ) = ac − b2 > 0, then f has a local minimum
at (0, 0) if a > 0 and a local maximum if a < 0. Moreover, if ac − b2 < 0,
(0, 0) gives neither a local max or min. One can easily see what these con-
ditions mean in terms of the eigenvalues of Hf . In fact, f(x, y) > 0 for all
(x, y) 6= (0, 0) if and only if both eigenvalues of Hf are positive. Similarly,
f(x, y) < 0 for all (x, y) 6= (0, 0) if and only if both eigenvalues of Hf are
negative. If ac − b2 < 0, then one eigenvalue is positive and the other is
negative, and neither inequality holds for all (x, y) 6= (0, 0). These claims
follow easily by writing Hf = QDQT , where Q is orthogonal, and putting
(u, v) = (x, y)Q. Then(

x y
)
Hf

(
x
y

)
=
(
u v

)(λ 0
0 µ

)(
u
v

)
= λu2 + µv2,

where λ, µ are the eigenvalues. Hence the signs of the eigenvalues of Hf

determine the behavior of f(x, y) near the origin. For example, the condi-
tions a > 0 and ac− b2 > 0 are equivalent to Tr(Hf ) > 0 and det(Hf ) > 0,
which are, in turn, equivalent to λ + µ > 0 and λµ > 0, i.e. λ, µ > 0.
The condition det(Hf ) < 0 tells us that λµ < 0, so the eigenvalues have
different signs, and hence f(x, y) assumes both positive and negative values
near (0, 0).

We remark that the above example only treats the algebraic aspect of
the second derivative test. The harder part is establishing the claim that
the eigenvalues of Hf , if nonzero, determine the nature of the critical point.

Example 12.2. Consider the quadratic form q(x, y) = x2 + xy + y2. Its
associated symmetric matrix is

A =
(

1 1/2
1/2 1

)
,

and q(x, y) = (x y)A(x y)T . The trace of A is two and its determinant is 3/4.
Hence both eigenvalues are positive. They are in fact 3/2 and 1/2. Thus A
can be expressed as QDQT , where Q = 1√

2

(
1 −1
1 1

)
and D = diag(3/2, 1/2).

Putting (u v) = (x y)Q, gives q(x, y) = 3/2u2 + 1/2v2, so q(x, y) can be
expressed as the sum of positive squares.
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Example 12.3. The above remarks are useful for determining the nature
of a curve ax2 + 2bxy + cy2 = d in R2. In the previous example,

x2 + xy + y2 = 3/2u2 + 1/2v2,

where x, y, u and v are related by

(u v) = (x y)Q,

where Q is orthogonal. Thus
(
x
y

)
= Q

(
u
v

)
. Now if we consider the or-

thonormal basis of R2 defined by the columns q1 and q2 of Q, this tells
us (

x
y

)
= uq1 + vq2.

In other words, u and v are the coordinates of
(
x
y

)
with respect to the

orthonormal basis q1 and q2. Moreover, since det(Q) = 1, q1 and q2 are
obtained by rotating e1 and e2. Letting < u, v > be coordinates on R2 (with
axes along q1 and q2), we see that the curve is the ellipse 3/2u2+1/2v2 = 1.

Let us summarize the above discussion and examples.

Proposition 12.2. Every real quadratic form q(x1, . . . , xn) can be written
as a sum of squares

q(x1, . . . , xn) =
n∑
i=1

λir
2
i ,

where λ1, . . . , λn are the eigenvalues of the matrix associated to q. The
coordinates r1, . . . , rn are obtained from the orthogonal change of variables
(r1 · · · rn) = (x1 · · · xn)Q, i.e. r = QTx.

12.1.3 Sylvester’s Theorem

Two symmetric matrices A and B are said to be congruent if there exists an
invertible C ∈ Rn×n such that B = CACT . Congruence is an equivalence
relation, and it is easy to see that if two symmetric matrices are congruent,
they the same quadratic form with respect to different bases. Thus, congru-
ence is analogous to similarity in the context of linear transformations. If
C is orthogonal, then of course A and B have the same eigenvalues, but in
general congruent matrices have different characteristic polynomials. The
purpose of this section is to prove Sylvester’s Theorem, which describes a
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common property of the eigenvalues of an arbitrary pair of congruent ma-
trices.

Before stating the theorem, suppose A is orthogonally diagonalized as
A = QDQT . Let π and ν denote the number of positive and negative
eigenvalues of A respectively. Since congruent matrices have the same rank,
it follows that they have the same π + ν. What isn’t obvious is that they
have the same π and the same ν. One way of saying this is to define the
index of A by putting ind(A) = π− ν. Sylvester’s Theorem is the following:
Theorem 12.3. Congruent matrices have the same index. In particular,
congruent matrices have the same number of positive and negative eigenval-
ues.

Proof. Let A and B = CACT be two congruent matrices. To show ind(A) =
ind(B), it suffices to show they have the same π, since π + ν is the same
for both. Choose an orthogonal matrix Q such that A = QDQT , where D
is diagonal. Now CACT is still symmetric, so we may also write CACT =
PEP T , where P is orthogonal and E is diagonal. This gives

CACT = CQDQTCT = PEP T ,

so E = MDMT , where M = P TCQ. Since A and D have the same π, as
do B and E, it suffices to show that the diagonal matrices D and E have
the same π.

Suppose E has more positive entries than D. For convenience, assume
that the first r diagonal entries of e1, . . . , er of E are positive and the rest
are negative or zero. Suppose D has s positive entries, and let fi(x) denote
the ith component of MTx. Then, since xTEx = xTMDMTx,

r∑
i=1

eix
2
i =

n∑
j=1

djfj(x1, . . . , xr, 0, . . . , 0)2. (12.2)

As s < r, there exists a nontrivial x ∈ Rn of the form (x1, . . . , xr, 0, . . . , 0)T

such that fj(x1, . . . , xr, 0, . . . , 0) = 0 for each j for which dj > 0. But, for
this choice of x, the left hand side of (12.2) is positive, while the right side
is nonpositive. This is impossible, hence, r ≤ s. By symmetry, r = s, so the
proof is finished.

Sylvester’s Theorem has the following Corollary.
Corollary 12.4. Suppose A ∈ Rn×n is an invertible symmetric matrix with
LDU decomposition A = LDLT . Then the number of positive eigenvalues
of A is the number of positive entries in D, and similarly for the number of
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negative eigenvalues. Thus the signs of the eigenvalues of A are the same as
the signs of the pivots of A.

Proof. This follows immediately from Sylvester’s Theorem.

Notice that this Corollary applies to even if A has a zero eigenvalue. For,
we can replace A by A+ rIn for any r for which A+ rIn is invertible.

Consider an example.

Example 12.4. Let q(x, y, z) = x2 + 2xy + 4xz + 2y2 + 6yz + 2z2. The
symmetric matrix associated to q is

A =

1 1 2
1 2 3
2 3 2

 .

A routine calculation gives

L∗A = DU =

1 1 2
0 1 1
0 0 −3

 =

1 0 0
0 1 0
0 0 −3

1 1 2
0 1 1
0 0 1

 ,

so we see immediately that the pivots of A are 1, 1, -3. Thus A has two
positive and one negative eigenvalue. The surface

x2 + 2xy + 4xz + 2y2 + 6yz + 2z2 = 1

is thus a hyperboloid of one sheet.

12.1.4 Positive Definite Matrices

The examples dealing with critical points are a motivation for asking when
a quadratic form takes only positive values away from 0. Let’s make a basic
definition.

Definition 12.1. Suppose A ∈ Rn×n is symmetric and let q(x) = xAxT be
its associated quadratic form. Then we say A is positive definite if and only
if q(x) > 0 whenever x 6= 0. Similarly, we say q is negative definite if and
only if q(x) < 0 whenever x 6= 0. Otherwise, we say that q is indefinite.

Clearly the quadratic form q has a minimum at the origin if A is positive
definite, and a maximum if A is negative definite. As the above examples
show, we have
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Proposition 12.5. Let A ∈ Rn×n be symmetric. Then the associated
quadratic form q(x) = xTAx is positive definite if and only if all the eigen-
values of A are positive and negative definite if and only if all the eigenvalues
of A are negative.

Proof. This is an exercise.

To obtain a satisfactory test to determine whether A is positive definite,
we return to the LDU decomposition. One thing we would like to know
is when a symmetric matrix can be written LDU : that is, LPDU isn’t
necessary.

12.1.5 A Test For Positivity

Let A ∈ Rn×n be symmetric and invertible, and suppose A = LPDU , where
U = LT , P is a permutation matrix and PD is symmetric (cf. Exercise
3.60). The trick is to notice that since L and U are respectively lower and
upper triangular, the matrices in the upper left corner of A can be expressed
in a very nice way. Let Am denote the m×m block in A’s upper left hand
corner. Then Am = Lm(PD)mUm. (This isn’t hard to show, but it’s a little
messy, so we will leave it as an exercise.) Since det(Lm) = det(Um) = 1
for all m, we have that det(Am) = det((PD)m). We can now establish the
following test.

Proposition 12.6. A real symmetric n× n matrix A has an LDU decom-
position if and only if det(Am) 6= 0 for all m. Moreover, if A has an LDU
decomposition, then the i pivot di is given by the formula

di =
det(Ai)

det(Ai−1)
, (12.3)

where by definition, we put det(A0) = 1.

Proof. As usual, put A = LPDU , where P is a permutation matrix. As
noted above, if m ≥ 1, then Am = Lm(PD)mUm. Hence,

det(Am) = det(Lm) det((PD)m) det(Um) = det((PD)m),

since Lm and Um are unipotent. But, as D is diagonal, (PD)m = PmDm.
Notice that Pm could in fact be the zero matrix, but since det(Am) 6= 0,
det(Pm) 6= 0 for all m. The only way this can happen is that P = In. For
det(P1) = p11 6= 0, so det(P2) = p11p22 which is nonzero, hence p22 6= 0,
and so on. Hence if every det(Am) 6= 0, A has an LDU decomposition. The
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converse is obvious, so we are done with the first claim. We will leave the
proof of (12.3) as an exercise.

We now show
Proposition 12.7. A real symmetric n× n matrix A is positive definite if
and only if det(Am) > 0 for all m.

Proof. The only if statement follows immediately from Proposition 12.6. To
prove the if statement, suppose det(Am) > 0 for all m. Then A has an LDU
decomposition, and its pivots are all positive by (12.3). Hence A is positive
definite.

Similarly, one can also show
Proposition 12.8. A symmetric A ∈ Rn×n is negative definite if and only
if (−1)mdet(Am) > 0 for all m ≤ n.

Proof. The proof is yet another an exercise.

Here is another example.

Example 12.5. Consider the matrix

A =


1 1 0 1
1 2 −1 0
0 −1 2 0
1 0 0 2

 .

One finds that det(A1) = det(A2) = det(A3) = 1 and det(A4) = −1. Hence
A has an LDU decomposition with pivots 1, 1, 1, −1. Thus A has three
positive and one negative eigenvalue.
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Exercises

Exercise 12.1. Show that if A =
(
a b
b c

)
satisfies a > 0 and ac − b2 > 0,

then both eigenvalues of A are positive. In other words, justify the second
derivative test.

Exercise 12.2. Decide whether g(x, y, z) = x2 + 6xy+ 2xz+ 3y2− xz+ z2

has a max, min or neither at (0, 0, 0).

Exercise 12.3. Formulate a second derivative test for functions of three
variables.

Exercise 12.4. Suppose A is a symmetric matrix such that det(A) 6= 0 and
A has both positive and negative diagonal entries. Explain why A must be
indefinite.

Exercise 12.5. Show that if A is a positive definite 3×3 symmetric matrix,
then the coefficients of its characteristic polynomial alternate in sign. Also
show that if A is negative definite, the coefficients are all negative.

Exercise 12.6. Give an example of a 3× 3 symmetric matrix A such that
the coefficients of the characteristic polynomial of A are all negative, but A
is not negative define. (Your answer could be a diagonal matrix.)

Exercise 12.7. For the following pairs A,B of symmetric matrices, deter-
mine whether A and B are congruent or not.

(i) A and B have the same characteristic polynomial and distinct eigen-
values.

(ii) det(A) < 0, det(B) > 0.

(iii) A =
(

1 2
2 1

)
and B =

(
1 2
2 −1

)
.

Exercise 12.8. Show that if A ∈ Rn×n is positive definite, then every
diagonal entry of A is positive. Also show that rA is positive definite if
r > 0 and negative definite if r < 0.

Exercise 12.9. Let A ∈ Rn×n be positive definite and suppose S ∈ Rn×n

is nonsingular.

(i) When is SAS−1 positive definite?

(ii) Is SAST positive definite?
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Exercise 12.10. Prove (12.3). That is, show that if A has an LDU decom-

position with nonzero pivots di, then di =
det(Ai)

det(Ai−1)
for all indices i. (Note:

by definition, det(A0) = 1.)

Exercise 12.11. Prove Proposition 12.8.

Exercise 12.12. Prove the converse statement in Proposition 12.6. That
is, show that if A is positive definite, then det(Am) > 0 for all m ≤ n.

Exercise 12.13. Describe the surface (x y z)A(x y z)T = 1 for the following
choices of A: 1 2 −1

2 0 3
3 −1 2

 ,

2 4 2
2 2 1
2 1 5

 .

Exercise 12.14. Suppose Ai = 0 for some i < n. Does this mean A has a
zero eigenvalue?

Exercise 12.15. Show that if A is positive definite or negative definite,
then A has an LDU decomposition.

Exercise 12.16. When is eA positive definite? Can eA ever be negative
definite or indefinite?

Exercise 12.17. A symmetric real matrix A is called positive semi-definite
if its quadratic form q satisfies q(x) ≥ 0 for all x ∈ Rn. Prove that A is
positive semi-definite if and only if every eigenvalue of A is non-negative.



367

12.2 Symmetric Matrices and Graph Theory

The purpose of this section is to give a very brief introduction to the sub-
ject of graph theory and to show how symmetric matrices play a funda-
mental role. A graph is a structure that consists of a finite set of vertices
v1, v2, . . . , vn and a finite set of bonds or edges e1, e2, . . . , eN . An edge ei
always joins two distinct vertices vr and vs say, and we will also denote such
an edge by vrvs. We will always assume that two vertices are joined by at
most one edge, but two distinct vertices need not be joined by any edge.

Graphs arise in all sorts of situations. For example, one version of the
travelling salesman problem poses the following question: suppose a travel-
ling salesman has to visit n cities any one of which is conected to any other
city by a road. Assuming the cost of driving between any two cities is the
same, find the least expensive route. Note that the edges may intersect, but
the driver has to stay on the edge she started on. For example, suppose
there are four cities located at the corners of a square. The shortest path
through all four cities is the path around the edge avoiding the diagonals.

A problem which goes back to the 18th century is the question of whether
there exists a path which allows one to cross all seven bridges over the Prugel
River in the city of Königsberg without ever crossing the same bridge twice.
It was shown to be impossible by L. Euler in 1736. For more information and
examples, I suggest consulting Introduction to Graph Theory by B. Bollobás.

12.2.1 The Adjacency Matrix and Regular Graphs

Every graph has an associated symmetric matrix with 0,1 entries called
the adjacency matrix of the graph. If the graph is Γ and its vertices are
v1, v2, . . . , vn, then the adjacency matrix AΓ is the n× n matrix aij , where
aij is 1 if there exists an edge joining vi and vj and 0 if not. It’s clear from
the definition that aij = aji, so A is symmetric as claimed. Moreover, the
graph can be reconstructed from its adjacency matrix.

Here are some examples of graphs and their matrices.

Example 12.6. Let Γ1 be the graph with vertices v1, v2, v3 and edges v1v2,
v1v3 and v2v3 . Then

AΓ1 =

0 1 1
1 0 1
1 1 0

 .
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If Γ2 has vertices v1, . . . , v4 and edges v1v2, v1v3, v1v4, and v2v4, then

AΓ2 =


0 1 1 1
1 0 0 1
1 0 0 0
1 1 0 0

 .

Clearly, the number of 1’s in the ith row is the number of edges containing
vi. The number of edges at a vertex vi is denoted by d(vi) and called the
degree of vi. Clearly, d(vi) is the sum of the entries in the ith row of AΓ.

Many graphs have the property that any two vertices have the same
degree. That is, d(vi) = d(vj) for all i, j. These graphs are called regular.
More particularly, a graph is called k-regular if any every vertex has degree
k. To test k-regularity, it is convenient to single out the vector 1n ∈ Rn all of
whose components are 1. The next Proposition characterizes the k-regular
graphs.
Proposition 12.9. A graph Γ with n vertices is k-regular if and only if
(k,1n) is an eigenpair for AΓ.

Proof. A graph Γ is k-regular if and only if every row of AΓ has exactly k 1’s,
i.e. each row sum is k. This is the same as saying (k,1n) is an eigenpair.

This result can be improved in the following way. A graph Γ is said to
be connected if any two of its vertices v, v′ can be joined by a path in Γ, a
path being a sequence of edges x0x1, x1x2, . . . , xs−1xs, where x0, . . . , xs are
not necessarily distinct vertices. Let ∆(Γ) denote the largest value of d(vi),
and let δ(Γ) denote the smallest value of d(vi). Then we have
Theorem 12.10. Let Γ be a connected graph with adjacency matrix AΓ.
Then we have the following.

(i) Every eigenvalue λ of AΓ satisfies |λ| ≤ ∆(Γ).

(ii) The largest eigenvalue λM satisfies δ(Γ) ≤ λM ≤ ∆(Γ).

(iii) Γ is ∆(Γ)-regular if and only if λM = ∆(Γ).

(iv) Finally, if Γ is regular, then multiplicity of λM = ∆(Γ) as an eigenvalue
is 1.

Proof. Let λ be an eigenvalue and choose an eigenvector u for λ with the
property the |uj | ≤ 1 for each component while us = 1 for some component
us. Then

|λ| = |λus| = |
∑
j

asjuj | ≤
∑
j

asj |uj | ≤
∑
j

asj ≤ ∆(Γ).
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This proves (i). To show (ii), it suffices to show λM ≥ δ(Γ). Recall the
projection formula for symmetric matrices (11.3). Namely, for all u ∈ Rn,

Au = λ1(uT1 u)u1 + · · ·+ λn(uTnu)un,

where u1, . . . ,un is an orthonormal eigenbasis for AΓ. Thus,

uTAu ≤ λMuTu.

In particular, 1TnAΓ1n ≤ nλM . On the other hand,

1TnAΓ1n =
∑
i,j

aij ≥ nδ(Γ).

Hence nλM ≥ nδ(Γ), which proves (ii).
We now prove (iii). (This is the only place where the hypothesis that Γ

is connected is used.) The claim that if Γ is ∆(Γ)-regular, then λM = ∆(Γ)
is obvious. Suppose that λM = ∆(Γ). Using the eigenvector u chosen in the
first paragraph of the proof, we have

∆(Γ) = ∆(Γ)us =
∑
j

asjuj ≤
∑
j

asj |uj | ≤
∑
j

asj ≤ ∆(Γ).

Hence for every j such that asj 6= 0, we have uj = 1. Since every vertex
can be joined to vs by a path, it follows that u = 1n. But this implies Γ
is ∆(Γ)-regular, giving (iii). It also follows that the multiplicity of ∆(Γ) as
an eigenvalue is 1, which proves (iv).

The adjacency matrix also answers the question of how many paths join
two vertices vi and vj of Γ. Let us say that a path with r edges has length
r.
Proposition 12.11. The number of paths of length r ≥ 1 between two not
necessarily distinct vertices vi and vj of Γ is (ArΓ)ij .

Proof. This is just a matter of applying the definition of matrix multiplica-
tion.

Example 12.7. Consider the connected graph with two vertices. Its adja-

cency matrix is A =
(

0 1
1 0

)
. Now Am = I2 if m is even and Am = A if m

is odd. Thus, as is easy to see directly, there is one path of any even length
from each vertex to itself and one of any odd length from each vertex to the
other.
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12.3 Computing Eigenvalues

12.3.1 The QR-Algorithm

We will now discuss a method known as the QR-algorithm for approximating
the eigenvalues of a nonsingular complex matrix A ∈ Cn×n. It is assumed
here that the reader has a passing knowledge of sequences and limits.

Recall from Chapter 10 that A can be factored in the form A = QR,
where Q is unitary and R is upper triangular with nonzero diagonals, i.e.
R ∈ GL(n,C). The QR-algorithm starts from the fact that QR and RQ
are similar, and hence have the same eigenvalues. Putting A = A0, and
successively applying QR, we have

A0 = Q0R0,

A1 = Q−1
0 AQ0 = R0Q0 = Q1R1,

A2 = Q−1
1 Q−1

0 AQ0Q1 = R1Q1 = Q2R2,

and
A3 = Q−1

2 Q−1
1 Q−1

0 AQ0Q1Q2 = R2Q2 = Q3R3.

Continuing in this manner, we get a sequence of similar matrices

A1 = Q1R1, A2 = Q2R2, A3 = Q3R3, . . . , Ai = QiRi, . . .

where each Qi is unitary and each Ri is upper triangular.
Of course it is entirely possible that the this process gives no new infor-

mation at all. For example, if A itself is unitary, then Ai = A for all i and
each Ri = In. However, in some (but not all) cases, the sequences Ai, Qi
and Ri all converge. In particular, if limit R = limm→∞Rm exists, then R
is upper triangular. The point of the QR-algorithm, as we will see, is that
in the eigenvalues of A are sometimes the diagonal entries of R.

12.3.2 The QR-Convergence Theorem

To understand the QR-algorithm, we need to define what is meant by a
convergent sequence of matrices.

Definition 12.2. A sequence Am = (a(m)
ij ) of complex matrices is said to

be convergent if and only if all the component sequences a(m)
ij converge in C.

Suppose limm→∞ a
(m)
ij = xij for all i, j. Then we say that limm→∞Am = X,

where X = (xij).
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Proposition 12.12. Let Um be a sequence of unitary matrices such that
limm→∞ Um exists, say limm→∞ Um = X ∈ Cn×n. Then X ∈ U(n,C).

Proof. We will assume the fact that limits of sequences of matrices behave
like limits of sequences of real or complex numbers. In particular, the prod-
uct rule holds. (This isn’t hard to verify, since the sum and product rules
hold for sequences in C.) Since UHmUm = In for all m, it follows that

In = lim
m→∞

UHmUm = lim
m→∞

UHm lim
m→∞

Um = XHX.

Hence, X is unitary.

Another pertinent fact is
Proposition 12.13. Every sequence of n × n unitary matrices has a con-
vergent subsequence.

Proof. This follows from the fact that the components of a unitary matrix
are bounded. In fact, since the columns of a unitary matrix U are unit
vectors in Cn, every component uij of U must satisfy |uij | ≤ 1. Thus, every
component sequence has a convergent subsequence, so every sequence of
unitary matrices has a convergent subsequence.

Now let us return to the QR-algorithm. Let A = A0, A1, A2, . . . be the
sequence of matrices similar to A defined above. The (m+ 1)st term of this
sequence is

Am+1 = U−1
m AUm = Qm+1Rm+1, (12.4)

where
Um = Q0Q1 · · ·Qm. (12.5)

Hence, if limm→∞Qm = In, we have

lim
m→∞

U−1
m AUm = R.

Note that all Um ∈ U(n,C), so a subsequence converges to some X ∈
U(n,C). Assuming limm→∞Qm = In, we conclude that

X−1AX = R.

In other words, under the assumption that limm→∞Qm = In, we recover
Schur’s Theorem: there exists a unitary X such that X−1AX is upper
triangular. In particular, the diagonal entries of R are the eigenvalues of the
original matrix A.

We now state a general convergence theorem for the QR-algorithm. We
will not prove it here. Notice that the hypotheses rule out the possibility
that A is unitary.
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Theorem 12.14. Let A ∈ Cn×n have the property that its eigenvalues λi
satisfy the condition |λi| 6= |λj | if i 6= j. Suppose Um (m ≥ 1) is the sequence
of unitary matrices defined in (12.5). Then limm→∞ U−1

m AUm exists and is
upper triangular. Taking X ∈ U(n,C) to be the limit of any subsequence of
the sequence Um, we obtain X−1AX = R.

The hypotheses allow A to have a zero eigenvalue. But we can always
replace A by A − rIn, where r is chosen so that A − rIn is nonsingular.
Employing such shifts is in fact one of the techniques used in numerical
analysis to speed up the convergence.

12.3.3 The Power Method

There is a related method for approximating the eigenvalues of a complex
matrix called the power method. Define a flag F in Cn to be a sequence
(F1, F2, . . . , Fn) of subspaces of Cn such that F1 ⊂ F2 ⊂ · · · ⊂ Fn of Cn

and dimFi = i for each i. An ordered basis (v1,v2, . . . ,vn) of Cn is a flag
basis for F if v1,v2, . . . ,vi is a basis of Fi for each i. (Recall that a similar
notion was defined in Chapter 11). Given A =

(
a1 · · · an

)
∈ GL(n,C),

the associated flag F(A) is the flag (F1, F2, . . . , Fn) such that Fi is the span
of the first i columns of A. Since A is nonsingular, the condition dimFi = i
is automatically satisfied.

Using flag bases and column operations, it is not hard to see
Proposition 12.15. Two matrices A and B in GL(n,C) define the same
flag if and only if there exists an upper triangular matrix T ∈ GL(n,C) such
that A = BT .

Each A ∈ GL(n,C) acts on a flag F = (F1, F2, . . . , Fn) by

AF = (A(F1), A(F2), . . . , A(Fn)).

Thus elements of GL(n,C) permute flags.

Definition 12.3. A flag F such that AF = F is called a fixed flag or
eigenflag for A.

Example 12.8. Let A be diagonal, say A = diag(α1, α2, . . . αn), where
αi 6= αj if i 6= j and all αi 6= 0, and let P be an n× n permutation matrix.
Then the flag F(P ) is fixed by A, and since the eigenvalues of A are distinct,
the F(P ), where P runs over all such permutation matrices, are in fact the
only flags fixed by A. Hence A has exactly n! fixed flags.

We will now introduce the notion of a limit of flags. Let Fm (m ≥ 1)
be a sequence of flags. Then we say limm→∞Fm = F if for each m, there
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exists a flag basis v(m)
1 ,v(m)

2 , . . . ,v(m)
n of Fm and a flag basis v1, . . . ,vn of

F such that for each index i, limm→∞ v(m)
i = vi.

There is an alternate way of formulating this definition using unitary
matrices. Applying Gram-Schmidt to a flag basis gives an orthonormal flag
basis (neat!), so every flag F can be written in the form F(U), where U is
unitary. Given a sequence Fm of flags, limm→∞Fm = F if and only if for
each m ≥ 0, there exists a unitary matrix Um such that:

(i) F(Um) = Fm,

(ii) limm→∞ Um exists, and

(iii) F(U) = F, where U = limm→∞ Um.
We can now explain the power method. Given A ∈ GL(n,C), consider

the sequence of flags F(Am) (m ≥ 1). Suppose this sequence has a limit,
say limm→∞F(Am) = F. Then F is a fixed flag for A. For,

AF = A lim
m→∞

F(Am)

= lim
m→∞

AF(Am)

= lim
m→∞

F(Am+1)

= F.

Now, if F = F(X), where X is unitary, then it follows that

AF = AF(X) = F(AX) = F(X).

Thus, we see again that there exists an upper triangular T such that AX =
XT .

The power method suggests that to find the eigenvalues of A, compute
Am for a large value of m, and assume that the flag F(Am) of this power
of A is near a flag fixed by A. Thus if we apply Gram-Schmidt to get an
orthonormal flag basis of F(Am), this gives a unitary X such that X−1AX
is (hypothetically) close to an upper triangular matrix T . The eigenvalues
of A are therefore approximated by the diagonal of X−1AX.

To connect this reasoning with the QR-algorithm, note that in the no-
tation of Section 12.3.1,

Am+1 = (Q0Q1 · · ·Qm−1Qm)(RmRm−1 · · ·R1R0). (12.6)

(This is easily proved by induction with the help of the identities RiQi =
Qi+1Ri+1 for i ≥ 0.) But Tm := RmRm−1 · · ·R1R0 is upper triangular,
Um = Q0Q1 · · ·Qm−1Qm is unitary and

Am+1 = UmTm.
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Therefore
F(Am+1) = F(UmTm) = F(Um),

since Tm is upper triangular. Thus, we may assume that F(Um) = F(X).
Finally, we also note without proof the following.

Proposition 12.16. Suppose all eigenvalues of A ∈ GL(n,C) have different
moduli. Then the flag sequence F(Am) (m ≥ 1) converges, so the flag
F = limm→∞F(Am) is fixed by A. Moreover, the line F1 is spanned by an
eigenvector of A for the eigenvalue with the largest modulus.

The above discussion of the power method is an illustration of what one
might call a fixed point method. Every A ∈ GL(n,C) has fixed flags, by
Schur’s Theorem; the problem of finding one is sometimes solved by the
power method.

We end the section with a comment about the LPDU decomposition
(cf. Chapter 3). The set of all flags in Cn is often called the the flag variety
of Cn. Let us denote it by F(n). The LPDU decomposition of a matrix
A ∈ GL(n,C) actually partitions GL(n,C) into what are called ”cells”. The
cells consist of all matrices A = LPDU with the same permutation matrix
P . (Recall, even though L and U are not in general uniquely determined
by A, P and D are.) The subsets of the form F(LPDU) = F(LP ) in the
flag variety F(n) are known as Schubert cells. They contain a great deal of
interesting geometrical information about F(n) and are used in many ways
to study its geometry.
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12.4 Summary

The purpose of this chapter was to make some applications of eigentheory.
The first application is real quadratic forms. A quadratic form is a function
on Fn of the form q(x) = xTAx, where A is a symmetric matrix. For
example, the second order terms in the Taylor series of a smooth function
f(x1, . . . , xn) is a real quadratic form. In the real case, the main question is
whether or not q(x) > 0 for all x 6= 0. When the answer is yes, q is said to
be positive definite. It turns out that q is positive definite if and only if all
eigenvalues of A are positive. But a simpler criterion is that A is positive
definite if and only if all its pivots are positive. Moreover, we gave a simple
determinantal test for the positivity of the pivots.

We next considered defined the concept of a graph and introduced a
certain real symmetric matrix called the adjacency matrix of the graph, and
we discussed the significance of its largest eigenvalue.

The third application is the QR-algorithm. In fact, given A ∈ Cn×n,
we showed how to construct a sequence of unitary matrices Um such that
limm→∞ UmAU

−1
m is an upper triangular matrix T . Moreover, we also

showed that the sequence Um can be assumed to converge to a unitary ma-
trix X, so XAX−1 = T . This justifies the QR-algorithm and gives another
way of approaching Schur’s Theorem.
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Chapter 13

The Jordan Decomposition
Theorem

The purpose of this Chapter is to study some fundamental results about the
linear transformations T : V → V , where V is a finite dimensional vector
space V over an algebraically closed field F. Of course, the eigenvalues of
a linear transformation are its main invariants, hence the restriction that F
be algebraically closed. with linear transformations all of whose eigenvalues
lie a priori in F. The first result is the Jordan Decomposition Theorem,
which says that every linear transformation T : V → V , can be uniquely
written as T = S+N , where S and N are linear transformations on V such
that S is semi-simple (i.e. V admits an eigenbasis for T ), N is nilpotent
(i.e. Nk = O for some positive integer k), and SN = NS. The linear
transformations S and N are called the semi-simple and nilpotent parts of
T respectively. Thus, T commutes with its semi-simple and nilpotent parts
S and N . The expression T = S+N is called the Jordan decomposition of T .
It is very useful for understanding the structure of linear transformations,
and moreover, it’s also crucial in proving many of the deep results about the
space L(V ) of all linear transformations T : V → V .

Our proof of the Jordan Decomposition Theorem illustrates the impor-
tance of the Cayley-Hamilton Theorem, which we proved in Chapter 9, but
only for diagonalizable matrices. This Theorem is in fact an immediate con-
sequence of the proof of the Jordan Decomposition Theorem given below.
Furthermore, the question of whether T is itself semi-simple, i.e. N = O,
reduces to checking whether T satisfies an equation q(T ) = O, where q is an
explicit polynomial which divides the characteristic polynomial of T .

Finally, we explore the Jordan Canonical Form. Although we skip the
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proof, as it is mainly combinatorial, we will state the result. Namely, every
A ∈ Fn×n is similar to a matrix of a certain type called Jordan Canonical
Form. The number of such forms which are nilpotent corresponds to the
number of expressions of n as a sum of non-negative integers written in de-
creasing order. Such decompositions are called partitions of n. The number
of partitions of n is a famous function denoted as π(n). Hence there are
exactly π(n) nilpotent conjugacy classes of n× n matrices.

13.1 The Main Result

Let F be an algebraically closed field (e.g. C), and suppose V is a finite
dimensional vector space over F. We will now prove one of the most fun-
damental results on the structure of linear transformations T : V → V . As
mentioned above, T is semi-simple if V admits an eigenbasis and is nilpotent
if T k = 0 for some positive integer k. In particular, we will show T can be
uniquely decomposed as T = S +N , where S is semi-simple, N is nilpotent
and SN = NS. This is called the Jordan decomposition of T . S is called
the semi-simple part of T and N is called the nilpotent part of T .

Theorem 13.1 (Jordan Decomposition Theorem). Let F be an arbitrary
algebraically closed field, and consider a linear transformation T : V → V ,
where V is a finite dimensional vector space over F of dimension n. Let
λ1, . . . , λm be the distinct eigenvalues of T , and suppose µi denotes the
multiplicity of λi. Thus

pT (x) = (−1)n(x− λ1)µ1 · · · (x− λm)µm . (13.1)

Then there exist subspaces C1, . . . , Cm of V with the following properties:

(1) T (Ci) ⊂ Ci, dimCi = µi and V is the direct sum

V = C1 ⊕ C2 ⊕ · · · ⊕ Cm. (13.2)

(2) Let S : V → V be the semi-simple linear transformation defined by the
condition that S(v) = λiv if v ∈ Ci. Then, the linear transformation
N = T − S is nilpotent.

(3) S and N commute, hence both commute with T .

(4) The decomposition T = S+N is the only decomposition of T into the
sum of a semi-simple S and a nilpotent N such that SN = NS.
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Proof. First of all, notice that if R : V → V is linear, then ker(Rr) ⊂
ker(Rs) if r and s are positive integers such that r < s. Since V is finite
dimensional, it follows that for some r > 0, ker(Rr) = ker(Rr+1), and thus
ker(Rr) = ker(Rs) if r ≤ s. In this case, we say that ker(Rr) is stable. Now
define

Ci = ker(Rrii ),

where Ri = T − λiIn and ri is large enough so that ker(Rrii ) is stable.
Lemma 13.2. Let U i = Rrii , and choose k > 0 such that ker(U1 · · ·Um)k =
ker(U1 · · ·Um)k+1. Put Ui = U

k
i . Then U = U1 · · ·Um = O, where O

denotes the zero transformation.

Proof. Let W = ker(U). To show that W = V , we will show V/W = {0}.
Obviously, T (W ) ⊂ W , so, arguing as in the proof of Proposition 9.13, T
induces a linear transformation T ′ : V/W → V/W such that T ′(v +W ) =
T (v) +W . Suppose W 6= V , so that dimV/W > 0. Since F is algebraically
closed, it follows that T ′ has an eigenvalue µ in F, hence an eigenvector
v +W in V/W . By definition,

T ′(v +W ) = µ(v +W ) = (µv) +W.

It follows that x = T (v)− µv ∈ W . Clearly, U(T − µIn) = (T − µIn)U , so
(T − µIn)(W ) ⊂W .

Now suppose µ is not an eigenvalue of T . Then (T −µIn) is injective on
V , so (T − µIn)−1 exists. Moreover, (T − µIn)(W ) = W , for dimensional
reasons, since (T − µIn)(W ) ⊂ W . Therefore, (T − µIn)−1(W ) = W too.
Consequently, since x ∈W ,

(T − µIn)−1(x) = (T − µIn)−1(T − µIn)(v) = v ∈W.

But this is a contradiction, since, by assumption, v +W 6= 0 +W in V/W .
Hence, µ is an eigenvalue of T . Since T (v) − µv ∈ W, we deduce that

U2(v) = 0. But, by definition, W = ker(U) = ker(U2), so, in fact, v ∈ W .
This is again a contradiction, so we conclude V = W .

We will show next ker(Ui) ∩ ker(Uj) = {0} if i 6= j. First, we show
Lemma 13.3. If i 6= j, then Ri(ker(Uj)) ⊂ ker(Uj). Moreover, Ri is one to
one on ker(Uj).

Proof. As RiRj = RjRi for all i and j, it follows that Ri(ker(Rsj)) ⊂ ker(Rsj)
for any s > 0. Hence, Ri(ker(Uj)) ⊂ ker(Uj). To see Ri is one to one on
ker(Uj), it suffices to show ker(Ri)∩ker(Uj) = {0}. Let v ∈ ker(Ri)∩ker(Uj).
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By the kernel criterion for injectivity, it suffices to show v = 0. Note
first that ker(Ri) ∩ ker(Rj) = {0}, since different eigenspaces have trivial
intersection. But since RiRj = RjRi, Rj(ker(Ri)) ⊂ ker(Ri). Thus, Rj is
a one to one linear transformation of ker(Ri) to itself. But the composition
of any two injective injective linear transformations (if defined) is injective.
Consequently, Rsj is injective on ker(Ri) for any s > 0. Therefore, by the
definition of Uj , ker(Ri) ∩ ker(Uj) = {0}.

It follows immediately that Ui is one to one on ker(Uj), so ker(Ui) ∩
ker(Uj) = {0} if i 6= j. We now come to the final Lemma.

Lemma 13.4. Suppose Q1, . . . , Qm are linear transformations with domain
and target V such that Q1 · · ·Qm = O. Suppose further that QiQj = QjQi
and ker(Qi) ∩ ker(Qj) = {0} for all i 6= j. Then

V =
m⊕
i=1

ker(Qi). (13.3)

Proof. We will use induction on m, the case m = 1 being obvious. Hence,
assume

ker(Q2 · · ·Qm) =
m⊕
i=2

ker(Qi). (13.4)

Suppose P : V → V and Q : V → V are linear transformations such that
PQ = O and ker(P ) ∩ ker(Q) = {0}. Then I claim V = ker(P ) ⊕ ker(Q).
Since dim(ker(P ) ∩ ker(Q)) = 0, the claim follows from Proposition 5.20
provided dim ker(P ) + dim ker(Q) ≥ dimV . Now

dimV = dim ker(Q) + dim im(Q).

But as PQ = O, im(Q) ⊂ ker(P ), so we indeed have the desired inequality.
To finish the proof, let P = Q1 and Q = Q2 · · ·Qm. Then PQ = O,

so, to apply the claim, we have to show ker(Q1) ∩ ker(Q) = {0}. Suppose
v ∈ ker(Q1) ∩ ker(Q). By (13.4), we can write v =

∑m
i=2 qi, where qi ∈

ker(Qi). Thus, Q1(v) =
∑m

i=2Q1(qi) = 0. Now Q1(qi) ∈ ker(Qi). For, as
Q1Qi = QiQ1 for all i,

QiQ1(qi) = Q1Qi(qi) = Q1(0) = 0.

Therefore, by the induction hypothesis, Q1(qi) = 0 for all i > 1. But
ker(Q1) ∩ ker(Qi) = {0} for i > 1, so each qi = 0. Hence v = 0, so we
conclude V = ker(Q1) ⊕ ker(Q). Consequently, dimV = dim ker(Q1) +
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dim ker(Q). Furthermore, by the induction hypothesis, we conclude that
V =

∑m
i=1 ker(Qi).

To show this sum is direct, it suffices, by Proposition 5.22, to show
that dimV =

∑m
i=1 dim ker(Qi). But, by Proposition 5.22 and the induction

hypothesis,

dimV = dim ker(Q1) + dim ker(Q)

= ker(Q1) +
m∑
i=2

dim ker(Qi).

Thus V =
⊕m

i=1 ker(Qi), completing the proof.

Since, by definition, ker(Ui) = Ci, we have thus V =
⊕m

i=1Ci, which
proves (13.2). It is easy to see T (Ci) ⊂ Ci for all i. To finish the proof
of (1), we have to show that νi = dimCi is the multiplicity of λi as an
eigenvalue, i.e. νi = µi.

Choosing a basis of each Ci, and using the fact that T (Ci) ⊂ Ci, we get
a basis B of V for which the matrix A = MB

B(T ) has block form

A =


A1 O · · · O
O A2 · · · O
...

...
. . .

...
O O · · · Am

 , (13.5)

where Ai is νi × νi, and each O is a zero matrix. It follows that

pA(x) = pA1(x) · · · pAm(x). (13.6)

But the only eigenvalue of Ai is λi since Rj = T − λjIn is one to one on Ci
if i 6= j. Thus pAi(x) = (x − λi)νi , so we conclude that the multiplicity of
λi is νi, which finishes the proof of (1).

Note that since pT (x) = pA(x), we have also shown (13.1). That is,

pT (x) = (x− λ1)µ1 · · · (x− λm)µm .

We next prove (2). The transformation S is well defined, and, by
definition, S(Ci) ⊂ Ci for all i. Since T (Ci) ⊂ Ci, we have N(Ci) ⊂ Ci too.
To show N is nilpotent, we only need to show that N is nilpotent on each
Ci. But for v ∈ Ci, we have

N ri(v) = (T − S)ri(v) = (T − λiIn)ri(v) = 0,
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by the definition of Ci. Hence N is nilpotent.
To prove (3), it suffices to show that if v ∈ Ci, then NS(v) = SN(v).

But this is obvious, since N(Ci) ⊂ Ci and S(v) = λiv for all v ∈ Ci.
To finish the proof, suppose T = S′ +N ′ is another decomposition of T ,

where S′ is semi-simple, N ′ is nilpotent, and S′N ′ = N ′S′.
Now as S′ is semi-simple, we can write

V =
k∑
i=1

Eγi(S
′), (13.7)

where γ1, . . . , γk are the distinct eigenvalues of S′ and Eγi(S
′) denotes the

eigenspace of S′ for γi. Since N ′ and S′ commute, N ′(Eγi(S
′)) ⊂ Eγi(S

′).
Therefore, we can assert that for any v ∈ Eγi(S

′),

N
′r(v) = (T − S′)r(v) = (T − γiIn)r(v) = 0

if r is sufficiently large. But this says γi is an eigenvalue of T , say γi = λj .
Thus, Eγi(S

′) ⊂ Cj . Hence, S = S′ on Eγi(S
′), and therefore (13.7) implies

S′ = S on V . Hence, N = N ′ too, and the proof is complete.

Definition 13.1. The subspaces C1, . . . , Cm associated to T : V → V are
called the invariant subspaces of T .

Corollary 13.5. If F is algebraically closed, then any n× n matrix A over
F can be expressed in one and only one way as the sum A = S +N of two
commuting matrices S and N in Fn×n, where S is diagonalizable and N is
nilpotent.

Proof. This follows immediately from the Theorem.

Let’s compute an example.

Example 13.1. Let V = F3, and let T be the matrix linear transformation

T =

 5 12 6
−2 −5 −3
1 4 4

 .

The characteristic polynomial of T is −(x − 1)2(x − 2), so the eigenvalues
are 1 and 2, which is repeated. Now the matrices T − I3 and T − 2I3 row
reduce to 1 0 −2

0 1 1
0 0 0

 and

1 0 −3
0 1 3/2
0 0 0


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respectively. Hence T is not semi-simple. Eigenvectors for 2 and 1 are
respectively  2

−1
1

 and

 3
−3/2

1

 .

Let us find the invariant subspaces. Since 2 is a simple root, its invariant
subspace is simply the line E2(T ) = C(2,−1, 1)T . Now

(T − I3)2 =

−2 0 6
1 0 −3
−1 0 3

 ,

which clearly has rank one. Its kernel, which is spanned by0
1
0

 and

3
0
1

 ,

is therefore the other invariant subspace of T . Hence the semi-simple linear
transformation S is determined by

S(

0
1
0

) =

0
1
0

 , S(

3
0
1

) =

3
0
1

 , S(

 2
−1
1

) = 2

 2
−1
1

 .

The matrix of S (as usual found by SP = PD) is therefore

MS =

−1 0 6
1 1 −3
−1 0 4

 ,

and we get N by subtraction:

N =

 6 12 0
−3 −6 0
2 4 0

 .

Thus the decomposition of T as the sum of commuting diagonalizable and
a nilpotent matrices is 5 12 6

−2 −5 −3
1 4 4

 =

−1 0 6
1 1 −3
−1 0 4

+

 6 12 0
−3 −6 0
2 4 0

 .
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Notice that if P is the matrix which diagonalizes S, i.e.

P =

0 3 2
1 0 −1
0 1 1

 ,

then

P−1TP =

−5 −9 0
4 7 0
0 0 2

 .

This gives us the matrix MB
B(T ) of T consisting of blocks down the diagonal.

We will also see that by choosing P more carefully, we can even guarantee
that P−1TP is upper triangular.
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Exercises

Exercise 13.1. Find the Jordan decomposition for each of the following
2× 2 matrices:

(i) A =
(

1 −1
1 −1

)
,

(ii) B =
(

2 4
0 1

)
,

(iii) C =
(

3 1
−1 1

)
.

Exercise 13.2. Find the Jordan decomposition for each of the following
3× 3 matrices:

(i) A =

2 1 0
0 1 1
0 0 2

 , and

(ii) B =

2 1 1
0 1 1
0 0 2

 .

Exercise 13.3. Suppose T : V → V is asemi-simple linear transformationon
a finite dimensional vector space V , and suppose W is a subspace of V such
that T (W ) ⊂W . Let T ′ : W →W be the linear transformation induced by
restricting T to W . Show that T ′ is semi-simple.

Exercise 13.4. Suppose A and B are commuting n × n matrices over C.
Suppose A and B are both diagonalizable. Show that they are simultane-
ously diagonalizable. Hint: Exercise 13.3 may be helpful.
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13.2 Further Results on Linear Transformations

The purpose of this Section is to derive some consequences of the Jordan
Decomposition Theorem. We will first give a complete proof of the Cayley-
Hamilton Theorem, and that will be followed by a discussion of the Jordan
Canonical Form.

13.2.1 The Cayley-Hamilton Theorem

The Cayley-Hamilton Theorem, which was partially proved in Chapter 9,
will now be proved completely. It follows almost immediately from the
Jordan decomposition.

Theorem 13.6. Let F be algebraically closed, and let V be finite dimen-
sional over F. Then every T ∈ L(V ) satisfies its own characteristic polyno-
mial.

Proof. Let λ1, . . . , λm be the distinct eigenvalues of T , and let µi be the
multiplicity of λi. We have to show that for every v ∈ V ,

(T − λ1In)µ1 · · · (T − λmIn)µm(v) = 0. (13.8)

Since V =
∑
Ci, it suffices to show (13.8) if v ∈ Ci for some i. What we

need is

Lemma 13.7. Let W be a finite dimensional vector space and assume T ∈
L(W ) is nilpotent. Then T dimW = O.

Proof. We will leave this as an exercise.

To finish the proof of the Theorem, suppose v ∈ Ci. In the proof of the
Jordan Decomposition Theorem, we showed that T−λiIn is nilpotent on Ci.
As dimCi = µi, the Lemma says that if v ∈ Ci, then (T − λiIn)µi(v) = 0.
But this implies (13.8) for v since the operators (T − λiIn)µi commute.
Hence the proof is complete.

Corollary 13.8. A linear transformation T : V → V is nilpotent if and
only if every eigenvalue of T is 0.

Proof. We leave this as an exercise.

One of our big questions is how do you tell whether a linear transforma-
tion T : V → V is semi-simple. The simplest characterization seems to be
as follows. As usual, λ1, . . . , λm denote the distinct eigenvalues of T .
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Theorem 13.9. A linear transformation T : V → V is semi-simple if and
only if

(T − λ1In) · · · (T − λmIn) = O. (13.9)

Proof. T is semi-simple if and only if T equals its semi-simple part S. Since
S = λiIn on Ci (see the proof of Theorem 13.1), it follows that T is semi-
simple if and only if T − λiIn = O on each Ci. Hence if T is semi-simple,
then (T − λ1In) · · · (T − λmIn) = O on V . On the other hand, suppose
(T − λ1In) · · · (T − λmIn) = O. Then Lemma 13.4 says that dimV =∑m

i=1 dimEλi
(T ), where Eλ(T ) is the eigenspace of T corresponding to the

eigenvalue λ. By the diagonalizability criterion of Proposition 9.12, it follows
that T is semi-simple.

Example 13.2. Let’s reconsider the linear transformation T : C3 → C3

from Example 13.1. By direct computation,

(T − I3)(T − 2I2) =

−6 −12 0
3 6 0
−2 −4 0

 .

This tells us that T is not semi-simple, which of course, we already knew.

Let F[x] denote the ring of polynomials in a variable x with coefficients
in F. Notice that the Cayley-Hamilton Theorem tells us that there is always
a polynomial p(x) ∈ F[x] for which p(T ) = O. This is also guaranteed by the
fact that dimL(V ) = n2, so In, T, T 2, . . . can’t all be linearly independent.

Definition 13.2. Let T : V → V be linear, and assume T 6= O. Then the
polynomial p(x) ∈ F[x] of least positive degree and leading coefficient one
such that p(T ) = O is called the minimal polynomial of T .

Of course, it isn’t clear that a unique minimal polynomial exists. How-
ever, let p1 and p2 each be a minimal polynomial. By division with remain-
ders, we can find polynomials q(x) and r(x) in F[x] such that

p2(x) = q(x)p1(x) + r(x),

where either r = 0 or the degree of r is less than the degree of p1. But as
p1(T ) = p2(T ) = O, it follows that r(T ) = O also. Since either r = 0 or the
degree of r is smaller than the degree of p2, we conclude r = 0. But then
q(x) is a constant since p1 and p2 have to have the same degree. Thus q = 1
since p1 and p2 each have leading coefficient one. Hence p1 = p2.
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Proposition 13.10. Suppose T : V → V is a nonzero linear transfor-
mationwith distinct eigenvalues are λ1, . . . , λm. The minimal polynomial
p(x) of T is unique, it divides the characteristic polynomial pT (x), and
(x− λ1) · · · (x− λm) divides p(x).

Proof. The uniqueness was already shown. By the Cayley-Hamilton The-
orem, pT (T ) = O. Hence writing pT (x) = q(x)p(x) + r(x) as above and
repeating the argument, we get r = 0. The fact that (x − λ1) · · · (x − λm)
divides p(x) is clear from the proof of Theorem 13.1. Indeed, we can factor
p(x) into linear factors p(x) = (x − a1) · · · (x − ak) where all ai ∈ F. If a
λj is not among the ai, we know p(T ) cannot be zero on Cj . Hence each
(x− λj) has to be a factor.

Corollary 13.11. A nonzero linear transformation T : V → V is semi-
simple if and only if its minimal polynomial is (x− λ1) · · · (x− λm).

Proof. Just apply Theroem 13.9 and Proposition 13.11.

Example 13.3. Let’s reconsider T : C3 → C3 from Example 13.1. We have
PT (x) = −(x− 1)2(x− 2). Now by direct computation,

(T − I3)(T − 2I2) =

−6 −12 0
3 6 0
−2 −4 0

 .

This tells us that T is not semi-simple, which, of course, we already knew.

13.2.2 The Jordan Canonical Form

The Jordan decomposition T = S + N of a T ∈ L(V ) can be extensively
improved. The first step is to find a basis for which T is upper triangular.
Recall that such a basis is known as a flag basis. In fact, it will suffice to
find a flag basis for N on each invariant subspace Ci of T .

For this we may as well suppose Ci = V . In other words, we’re assuming
T : V → V is a linear transformation with a single eigenvalue. Let k be
the least positive integer for which Nk = O, where N is the nilpotent part.
Clearly

ker(N) ⊂ ker(N2) ⊂ · · · ⊂ ker(Nk) = V.

Since k is the least integer such that Nk = O, each of the above inclusions
is proper. Thus we can construct a basis of V by first selecting a basis of
ker(N), extending this basis to a basis of ker(N2), extending the second



389

basis to a basis of ker(N3) and so forth until a basis B of V = ker(Nk) is
obtained.

Notice that for each r > 0, N(ker(N r)) ⊂ ker(N r−1). Thus the basis just
constructed gives us a flag basis for N , and so the matrix MB

B(N) is strictly
upper triangular with zeros on its diagonal since N is nilpotent. Since S is a
multiple of λiIµi on Ci, MB

B(T ) is upper triangular and each of its diagonal
entries is equal to λ.

Example 13.4. Let

N =

0 1 0
0 0 1
0 0 0

 .

Then N(e1) = 0, N(e2) = e1 and N(e3) = e2. Thus

ker(N) = Fe1 ⊂ ker(N2) = Fe1 + Fe2 ⊂ (N3) = F3.

The matrix N is an example of a matrix in Jordan Canonical Form.

Theorem 13.12 (The Jordan Canonical Form). As usual, let V be a finite
dimensional vector space over the algebraically closed field F, and suppose
T ∈ L(V ). Then there exists a basis B of V for which

MB
B(T ) =


J1 O · · · O
O J2 · · · O
...

...
. . .

...
O · · · O Js

 , (13.10)

where the matrices Ji (the Jordan blocks) have the form

Ji = λIni +Ni,

where Ni is the upper triangular ni×ni matrix with 0’s on the diagonal, 1’s
on the super diagonal and 0’s above the super diagonal (as in the example
N above). Furthermore, we may suppose n1 ≥ n2 ≥ · · · ≥ ns. In particular,
when V = Fn, we get the result that every A ∈ Fn×n is similar to a matrix
having the form (13.10).

The proof requires that we play around a bit more in the manner of the
above discussion. We will skip the details, as they are quite messy.

Note that there is no connection between the ni and the eigenvalues λj
of T , except that if Ji = λIni + Ni, then ni cannot exceed the multiplicity
of λ as a root of pT (x). Note also that each eigenvalue λi of T appears µi
times on the diagonal of MB

B(T ).
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Example 13.5. Here are a couple of examples in the 4× 4 case:

J1 =


0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

 , J2 =


0 1 0 0
0 0 1 0
0 0 0 0
0 0 0 0

 and J3 =


0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

 .

The first matrix has one 4× 4 Jordan block, the second has a 3× 3 Jordan
block and a 1× 1 Jordan block and the third has two 2× 2 Jordan blocks.

13.2.3 A Connection With Number Theory

One of the interesting connections between matrix theory and number theory
comes from the Jordan Canonical Forms of nilpotent matrices. To elucidate
this, we need to introduce the notion of a partition of n.

Definition 13.3. Let n be a positive integer. Then a partition is a non-
increasing sequence of positive integers a1 ≥ a2 ≥ · · · ≥ as such that∑s

i=1 ai = n. The partition function π(n) is the function which counts
the number of partitions of n.

Thus π(1) = 1, π(2) = 2, π(3) = 3 and π(4) = 5.

Example 13.6. The partitions of 6 are

6 = 1 + 1 + 1 + 1 + 1 + 1 = 2 + 1 + 1 + 1 = 2 + 2 + 1 + 1 = 3 + 2 + 1 =

2 + 2 + 2 = 3 + 3 = 4 + 1 + 1 = 4 + 2 = 5 + 1.

Thus there are 10 partition of 6, so π(6) = 10.

The partition function grows very rapidly. The upshot of the Jordan
Canonical Form is that to each partition (n1, n2, . . . , ns) of n, there is a
nilpotent matrix of the form (13.10) (with only zeros on the diagonal, of
course), and every n × n nilpotent matrix is similar to one of these matri-
ces. This seemingly accidental connection has lead to some suprisingly deep
results in algebra.
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Exercises

Exercise 13.5. Let W be a finite dimensional vector space and assume
T ∈ L(W ) is nilpotent. Show that T dimW = O.

Exercise 13.6. Use the Cayley-Hamilton Theorem to prove directly that
the minimal polynomial of a linear transformation T : V → V divides the
characteristic polynomial of T . (Hint: write pT (x) = a(x)p(x) + r(x) where
either r = 0 or the degree of r(x) is smaller than the degree of p(x).)

Exercise 13.7. Prove Corollary 13.8 directly using the fact that

ker(T ) ⊂ ker(T 2) ⊂ ker(T 3) ⊂ · · · .

Exercise 13.8. Compute the minimal polynomials of the following matri-
ces: 1 1 1

0 2 1
0 0 2

 ,

1 1 0
1 2 1
0 1 −1

 ,

 0 1 2
−1 0 1
−2 −1 0

 .

Exercise 13.9. Show that if F = C, the Cayley-Hamilton Theorem follows
from the fact any element of L(V ) is the limit of a sequence of semi-simple
elements of L(V ). How does one construct such a sequence?

Exercise 13.10. Prove directly that if A is a 2 × 2 matrix over F which
isn’t diagonalizable, then A is similar to a matrix of the form(

λ 1
0 λ

)
.

Exercise 13.11. Describe the Jordan Canonical Form of a diagonalizable
matrix.

Exercise 13.12. Deduce a Jordan Canonical Form for

M =

 5 12 6
−2 −5 −3
1 4 4

 .

Exercise 13.13. Deduce a Jordan Canonical Form for

N =

0 1 0
1 0 −1
0 1 0

 .

Exercise 13.14. List all 4 × 4 and 5 × 5 nilpotent matrices in Jordan
Canonical Form.
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13.3 Summary

The Jordan Decomposition Theorem states that if V is a finite dimensional
vector space over an algebraically closed field, then every linear transforma-
tion T : V → V admits a unique decomposition into the sum of a semi-simple
linear transformation S and a nilpotent transformation N which commute:
SN = NS. This result is closely related to the Cayley-Hamilton Theorem
(T satisfies its characteristic polynomial), and, in fact, yields a short proof.
The Jordan Decomposition Theorem gives a simple necessary and sufficient
criterion for T to be semi-simple. Simply put, T is semi-simple if and only
if its minimal polynomial is (x− λ1) · · · (x− λm), where λ1, . . . , λm are the
distinct eigenvaluesof T .

Moreover, there exists an eigenbasis B for S such that the matrix of T
with respect to B is upper triangular. A refinement known as the Jordan
Canonical Form asserts further that there exists an eigenbasis for S for
which the matrix MN of N takes a particularly simple form: MN has a
decomposition into so called Jordan blocks, where each Jordan block has
1’s on its super-diagonal and zeros everywhere else. It follows that the
equivalence classes of nilpotent matrices under similarity are in one to one
correspondence with the partitions of n, which gives a surprising connection
between matrix theory and number theory.
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Chapter 14

Appendix: R2 and R3

The purpose of this Appendix is to give a brief introduction to the funda-
mental concepts of vectors and their geometry in R2 and R3.

14.1 Basic Concepts

R2 and R3 consist respectively of all column vectors
(
x
y

)
and

xy
z

, where

x, y, z ∈ R. They represent a plane with a two dimensional coordinate
system and ordinary space with a three dimensional coordinate system.

FIGURE 1 (Euclidean PLANE)

FIGURE 2 (Euclidean 3-space)

One can always visualize R2 as a subset of R3, namely as those vectors
whose last component z = 0. Vectors in R2 or R3 are added by adding there
corresponding components. For example, in R3 we havers

t

+

xy
z

 =

r + x
s+ y
t+ z

 . (14.1)

This definition of addition satisfies a rule called the Parallelogram Law.
Parallelogram Law: The sum a + b of two vectors in R2 or R3 is the
vector along the diagonal of the parallelogram with vertices at 0, a and b.
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FIGURE 3
(PARALLELOGRAM LAW)

There is a second operation called scalar multiplication, where a vector
a is dilated by a real number r. This is defined for R3 (in a rather obvious
way) by

ra = r

a1

a2

a3

 =

ra1

ra2

ra3

 . (14.2)

Scalar multiplication has an obvious geometric interpretation. Multiply-
ing a by r stretches or shrinks a along itself by the factor |r|, changing its
direction if r < 0. The geometric interpretation of addition is the Parallel-
ogram Law.

14.2 Lines

We now discuss how to represent lines. We will discuss planes below. A line
in R2 is cut out by a linear equation ax+ by = c, but a line in R3 needs two
equations a1x + b1y + c1z = d1 and a2x + b2y + c2z = d2. Intuitively, each
equation cuts out a plane, and a line is the set of points on both planes.
But a better approach to finding a line is to use the principle that a line is
determined by two points.

So suppose we want to express the line through a and b. Notice that
the curve

x(t) = a + t(b− a) = (1− t)a + tb, (14.3)

where t varies through R, has the property that x(0) = a, and x(1) = b. The
motion depends linearly on t, and, as can be seen from the Parallelogram
Law, x(t) traces out the line through a parallel to b− a.

Definition 14.1. The line through a parallel to c is defined to be the path
traced out by the curve x(t) = a + tc as t takes on all real values. We will
refer to x(t) = a + tc as the vector form of the line.

The vector form x(t) = a + tc leads directly to parametric form of the
line. In the parametric form, the components x1, x2, x3 of x are expressed
as linear functions of t as follows:

x1 = a1 + tc1, x2 = a2 + tc2, x3 = a3 + tc3. (14.4)

Note that the definition for a line in the plane is essentially the same. Just
forget the last coordinate.
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Letting a vary while b is kept fixed gives all lines of the form x = a+ tb.
Every point of R3 is on one of these lines, and two lines either coincide or
don’t meet at all. (The proof of this is an exercise.) We will say that two
lines a+tb and a′+tb′ are parallel if b and b′ are collinear. That is, b′ = ac
for some real number a. We will also say that the line a + tb is parallel to
b.

Example 14.1. Let’s find an expression for the line in R3 passing through 3
4
−1

 and

1
0
9

. We apply the trick in (14.3). Consider

x = (1− t)

 3
4
−1

+ t

1
0
9

 .

Clearly, when t = 0, x =

 3
4
−1

, and when t = 1, x =

1
0
9

. We can

then express x in the vector form x = a + t(b − a) where a =

 3
4
−1

 and

b =

1
0
9

. The parametric form is

x1 = −2t+ 1, x2 = −4t+ 4, x3 = 10t+ 1.

14.3 The Inner Product

Before discussing planes, we will introduce the inner product on R2 and R3.
This is the fundamental tool on which all measurement is based.

Definition 14.2. The inner product of two vectors a =

a1

a2

a3

 and b =b1b2
b3

 in R3 is defined to be a · b := a1b1 + a2b2 + a3b3.

The inner product satisfies several basic identities. Let a, b and c be
arbitrary vectors and r any scalar (i.e., r ∈ R). Then
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(1) a · b = b · a,

(2) (a + b) · c = a · c + b · c,

(3) (ra) · b = a · (rb) = r(a · b), and

(4) a · a > 0 unless a = 0, in which case a · a = 0.

These properties are all easy to prove, so we will leave them as exercises.
The length |a| of a is defined in terms of the dot product by putting

|a| =
√

a · a

= (
3∑
i=1

a2
i )

1/2.

Notice that
|ra| = |r||a| .

The distance d(a,b) between two vectors a and b is defined as the length
of their difference a− b. Thus

d(a,b) = |a− b|

=
(
(a− b) · (a− b)

)1/2
=

( 3∑
i=1

(ai − bi)2
)1/2

.

The dot product is used to detect when two vectors are orthogonal. We
say a and b are orthogonal (a fancy word for perpendicular) if a · b = 0.
The zero vector 0 is orthogonal to every vector, and by property (4) of the
dot product, 0 is the only vector orthogonal to itself. Two vectors a and
b in R2 are orthogonal if and only if and only if a1b1 + a2b2 = 0. Thus if
a1, b2 6= 0, then a and b are orthogonal if and only if a2/a1 = −b1/b2. Hence
the slopes of orthogonal vectors in R2 are negative reciprocals.
Proposition 14.1. Two vectors a and b are orthogonal if and only if |a +
b| = |a− b|.

To prove this, consider the triangle with vertices at 0,a,b. The hy-
potenuse of this triangle is a segment of length |a − b|. (This follows from
the Parallelogram Law.) Next consider the triangle with vertices at 0,a,−b.
The hypotenuse of this triangle is likewise a segment of length |a + b|. Now
suppose |a+b| = |a−b|. Then by the side side side criterion for congruence,
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which says that two triangles are congruent if and only if they have corre-
sponding sides of equal length, the two triangles are congruent. It follows
that a and b are orthogonal. For the converse direction, suppose a and b
are orthogonal. Then the side angle side criterion for congruence applies, so
our triangles are congruent. Thus |a + b| = |a− b|.

DIAGRAM FOR PROOF

It is much easier to prove this Proposition with algebra (namely the dot
product). The point is that a · b = 0 if and only if |a + b|2 = |a− b|2. For

(a + b) · (a + b) = (a− b) · (a− b)

reduces to the equation 2a ·b = −2a ·b, which holds if and only if a ·b = 0.

14.4 Planes

A plane in R3 is defined to be the solution set of a linear equation

ax+ by + cz = d (14.5)

in three variables x, y and z. The linear equation (14.5) expresses that the

dot product of the vector a =

ab
c

 and the variable vector x =

xy
z

 is the

constant d:
a · x = d.

If d = 0, the plane passes through the origin, and its equation is said to
be homogeneous. In this case it is easy to see how to interpret the plane

equation. The plane ax + by + cz = 0 consists of all

rs
t

 orthogonal to

a =

ab
c

. For this reason,

ab
c

 is said to be a normal to the plane. (On a

good day, one is normal to the plane of the floor.)
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Example 14.2. Find the plane through

1
2
3

 with nomal

2
3
5

. Now a =2
3
5

, so in the equation (14.5) we have d =

2
3
5

 ·

1
2
3

 = 23. Hence the

plane is 2x+ 3y + 5z = 23.

Holding a 6= 0 constant and varying d gives a family of planes a · x = d
completely filling up R3 such that two planes either coincide or don’t have
any points in common. Hence the family of planes ax+ by + cz = d (a, b, c
fixed and d arbitrary) are all parallel. By drawing a picture, one can see

from the Parallelogram Law that every vector

rs
t

 on ax+ by + cz = d is

the sum of a fixed vector

x0

y0

z0

 on ax+ by+ cz = d and an arbitrary vectorxy
z

 on the parallel plane ax+ by + cz = 0 through the origin.

Example 14.3. Suppose we want to find the plane through1
1
1

 ,

1
2
1

 and

0
0
1

 .

The linear system

a+ b+ c = d

a+ 2b+ c = d

c = d

expresses the fact that the plane ax+ by + cz = d contains all three points.
Subtracting the first equation from the second, we get b = 0. The last
equation says c = d, so from the first, we get a+c = c. Hence a = b = 0 and
c = d. The plane therefore has the form cz = c or z = 1 since c 6= 0. (The
astute observer would have noticed this at the beginning and saved themself
having to do the calculation.)
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14.5 Orthogonal Decomposition and Projection

One of the fundamental applications of the dot product is the orthogonal
decomposition of a vector into two or more mutually orthogonal components.

Proposition 14.2. Given a,b such that b 6= 0, there exists a unique scalar
r so that a = rb + c where b and c are orthogonal. In fact,

r = (
a · b
b · b

),

and

c = a− (
a · b
b · b

)b.

Proof. We see this as follows: since we want rb = a − c, where c has the
property that b · c = 0, then

rb · b = (a− c) · b = a · b− c · b = a · b.

As b · b 6= 0, it follows that r = a · b/b · b. The reader should check

that c = a − (
a · b
b · b

)b is in fact orthogonal to b. Thus we get the desired
orthogonal decomposition

a = (
a · b
b · b

)b + c.

FIGURE 3
ORTHOGONAL DECOMPOSITION

Definition 14.3. The vector

Pb(a) = (
a · b
b · b

)b

will be called the orthogonal projection of a on b.

By the previous Proposition, another way to express the orthogonal de-
composition of a into the sum of a component parallel to b and a component
orthogonal to b is

a = Pb(a) + (a− Pb(a)). (14.6)
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Example 14.4. Suppose b and c are any two nonzero orthogonal vectors
in R2, so that b · c = 0. I claim that any vector a orthogonal to b is a
multiple of c. Reason: if a · b = 0, then a1b1 + a2b2 = 0. Assuming, for
example, that b1 6= 0, then c2 6= 0 and

a1 = −b2
b1
a2 =

c1
c2
a2,

and so the claim follows from a1 =
a2

c2
c1 and a2 =

a2

c2
c2.

It follows that for any a ∈ R2, there are scalars r and s so that a =
rb + sc. We can solve for r and s by using the dot product as before. For
example, a · b = rb · b. Hence we can conclude that if b 6= 0, then

rb = Pb(a),

and similarly, if c 6= 0, then

sc = Pc(a).

Therefore, we have now proved a fundamental fact which we call the pro-
jection formula for R2.

Proposition 14.3. If b and c are two non zero mutually orthogonal vectors
in R2, then any vector a in R2 can be uniquely expressed as the sum of its
projections on b and c. In other words,

a = Pb(a) + Pc(a) = (
a · b
b · b

)b + (
a · c
c · c

)c. (14.7)

Projections can be written much more simply if we bring in the notion
of a unit vector. When b 6= 0, the unit vector along b is defined to be the
vector of length one given by the formula

b̂ =
b

(b · b)1/2
=

b
|b|

.

(Be sure to check that b̂ is indeed of length one.) Unit vectors are also called
directions. Keep in mind that a direction â exists only when a 6= 0. It is
obviously impossible to assigne a direction to the zero vector. If b̂ and ĉ are
unit vectors, then the projection formula (14.7) takes the simpler form

a = (a · b̂)b̂ + (a · ĉ)ĉ. (14.8)
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Example 14.5. Let b =
(

3
4

)
and c =

(
4
−3

)
. Then b̂ =

1
5

(
3
4

)
and

ĉ =
1
5

(
4
−3

)
. Let a =

(
1
1

)
. Thus, for example, Pb(a) =

7
5

(
3
4

)
, and

a =
7
5

(
3
4

)
+

1
5

(
4
−3

)
.

14.6 The Cauchy-Schwartz Inequality and Cosines

If a = b + c is an orthogonal decomposition in R3 (which just means that
b · c = 0), then

|a|2 = |b|2 + |c|2.

This is known as Pythagoras’s Theorem (see Exercise 4).
If we apply Pythagoras’ Theorem to (14.6), for example, we get

|a|2 = |Pb(a)|2 + |a− Pb(a)|2.

Hence,

|a|2 ≥ |Pb(a)|2 = (
a · b
b · b

)2|b|2 =
(a · b)2

|b|2
.

Cross multiplying and taking square roots, we get a famous fact known as
the Cauchy-Schwartz inequality.
Proposition 14.4. For any a, b ∈ R3, we have

|a · b| ≤ |a||b|.

Moreover, if one of a or b is nonzero, then equality holds if and only if a
and b are collinear.

Note that two vectors a and b are said to be collinear whenever one of
them is a scalar multiple of the other. If either a and b is zero, then auto-
matically they are collinear. If b 6= 0 and the Cauchy-Schwartz inequality is
an equality, then working backwards, one sees that |a− Pb(a)|2 = 0, hence
the validity of the second claim.

Cauchy-Schwartz says that for any two unit vectors â and b̂, we have
the inequality

−1 ≤ â · b̂ ≤ 1.

We can therefore define the angle θ between any two non zero vectors a and
b in R3 by putting

θ := cos−1(â · b̂).
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Note that we don’t try to define the angle when either a or b is 0. (Recall
that if −1 ≤ x ≤ 1, then cos−1 x is the unique angle θ such that 0 ≤ θ ≤ π
with cos θ = x.) With this definition, we have

a · b = |a||b| cos θ (14.9)

provided a and b are any two non-zero vectors in R3. Hence if |a| = |b| = 1,
then the projection of a on b is

Pb(a) = (cos θ)b,

which justifies the definition. Thus another way of expressing the projection
formula is

â = (cosβ)b̂ + (cos γ)ĉ.

Here β and γ are the angles between a and b and c respectively, and cosβ
and cos γ are called the corresponding direction cosines.

In the case of R2, there is already a notion of the angle between two
vectors, defined in terms of arclength on a unit circle. Hence the expression
a · b = |a||b| cos θ is often (especially in physics) taken as definition for the
dot product, rather than as definition of angle, as we did here. However,
defining a · b in this way has the disadvantage that it is not at all obvious
that elementary properties such as the identity (a+b) ·c = a ·c+b ·c hold.
Moreover, using this as a definition in R3 has the problem that the angle
between two vectors must also be defined. The way to solve this is to use
arclength, but this requires bringing in an unnecessary amount of machinery.
On the other hand, the algebraic definition is easy to state and remember,
and it works for any dimension. The Cauchy-Schwartz inequality, which is
valid in R3, tells us that it possible two define the angle θ between a and b
via (14.9) to be θ := cos−1(â · b̂).

14.7 Examples

Let us now consider a couple of typical applications of the ideas we just
discussed.

Example 14.6. A film crew wants to shoot a car moving along a straight
road with constant speed x km/hr. The camera will be moving along a
straight track at y km/hr. The desired effect is that the car should appear
to have exactly half the speed of the camera. At what angle to the road
should the track be built?
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Solution: Let θ be the angle between the road and the track. We need
to find θ so that the projection of the velocity vector vR of the car on the
track is exactly half of the velocity vector vT of the camera. Thus(vR · vT

vT · vT
)
vT =

1
2
vT

and vR · vT = |vR||vT | cos θ. Now |vR| = x and |vT | = y since speed is by
definition the magnitude of velocity. Thus

xy

y2
cos θ =

1
2

Consequently, cos θ = y/2x. In particular the camera’s speed cannot exceed
twice the car’s speed.

Projection methods allow us to find formulas for distance. Consider
the distance from a point to a plane P in R3. The problem becomes quite
simple if we break it up into two cases. First, consider the case of a plane
P through the origin, say with equation ax+ by + cz = 0. Suppose v is an
arbitrary vector in R3 whose distance to P is what we seek. Decompose v
into orthogonal components as

v = Pn(v) + (v − Pn(v)). (14.10)

It’s intuitively clear that the distance we’re looking for is

d = |Pn(v)| = |v · n|/
√

n · n,

but let us check carefully. For one thing, we need to say what the distance
from v to P is. We will assume it means the minimum value of |v − r|,
where r is on P . To simplify notation, put p = Pn(v) and q = v−p. Since
v = p + q,

v − r = p + q− r.

Since P contains the origin, q − r lies on P since both q and r do. As p
and q− r are orthogonal,

|v − r|2 = |p|2 + |q− r|2.

But p is fixed, so |v−r|2 is minimized when |q−r|2 = 0. Thus |v−r|2 = |p|2,
and the distance D(v, P ) from v to P is indeed

D(v, P ) = |p| = |v · n|
(n · n)

1
2

= |v · n̂|.
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Also, the point on P nearest v is q. If v =

rs
t

 and n =

ab
c

, then the

distance is
D(v, P ) =

|ar + bs+ ct|√
a2 + b2 + c2

.

We now attack the general problem by reducing it to the first case. We
want to find the distance D(v, Q) from v to an arbitrary plane Q in R3.
Suppose the equation of Q is ax+ by+ cz = d, and let c be a vector on Q. I
claim that the distance from v to Q is the same as the distance from v−c to
the plane P parallel to Q through the origin, i.e. the plane ax+ by+ cz = 0.
Indeed, we already showed that every vector on Q has the form w+c where
w is on P . Thus let r be the vector on Q nearest v. Since d(v, r) = |v−r|, it
follows easily from r = w + c that d(v, r) = d(v− c,w). Hence the problem
amounts to minimizing d(v − c,w) for w ∈ P , which we already solved.
Thus

D(v, Q) = |(v − c) · n̂|,

which reduces to the formula

D(v, Q) =
|ar + bs+ ct− d|√

a2 + b2 + c2
,

since
c · n̂ =

c · n
(n · n)

1
2

=
d√

a2 + b2 + c2
.

In summary, we have
Proposition 14.5. Let Q be the plane in R3 defined by ax+ by + cz = d,
and let v be any vector in R3, possibly lying on Q. Let D(v, Q) be the
distance from v to Q. Then

D(v, Q) =
|ar + bs+ ct− d|√

a2 + b2 + c2
.
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Exercises

14.8 The Cross Product

14.8.1 The Basic Definition

Sometimes one needs a vector c orthogonal to a pair of noncollinear vectors
a and b. This is provided courtesy of the cross product a × b. This is
defined geometrically as follows. Let P denote the unique plane through
the origin containing both a and b, and let n be the choice of unit vector
normal to P so that the thumb, index finger and middle finger of your right
hand can be lined up with the three vectors a,b and n without dislocating
any joints. In this case we call (a,b,n) a right handed triple. (Otherwise,
it’s a left handed triple.) Let θ be the angle between a and b, so 0 < θ < π.
Then we put

a× b = |a||b| sin θn. (14.11)

If a and b are collinear, we set a× b = 0.
While this definition is very elegant, and is useful for revealing the ge-

ometric properties of the cross product, it doesn’t help much in computing
a× b. But if a · b = 0, (since cos θ = 0) one sees that |a× b| = |a||b|.

To see a couple of examples, note that (i, j,k) and (i,−j,−k) both are
right handed triples, but (i,−j,k) and (j, i,k) are left handed. Thus i×j = k,
while j× i = −k. Similarly, j×k = i and k× j = −i. In fact, these examples
point out two of the general properties of the cross product:

a× b = −b× a,

and
(−a)× b = a× (−b) = −(a× b).

The question is whether or not the cross product is computable. In fact, the
answer to this is yes. First, let us make a temporary definition. If a,b ∈ R3,
put

a ∧ b =

a2b3 − a3b2
a3b1 − a1b3
a1b2 − a2b1

 .

Notice that a ∧ b is defined without any restrictions on a and b. It is not
hard to verify by direct computation that a∧b is orthogonal to both a and
b, so a ∧ b = r(a× b) for some r ∈ R.

The key fact is the following
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Proposition 14.6. For all a and b in R3,

a× b = a ∧ b.

This takes care of the computability problem since a ∧ b is easily com-
puted. An outline the proof goes as follows. First, note the following iden-
tity:

|a ∧ b|2 + (a · b)2 = (|a||b|)2. (14.12)

The proof is just a calculation, and we will omit it. Since a ·b = |a||b| cos θ,
and since sin θ ≥ 0, we deduce that

|a ∧ b| = |a||b| sin θ. (14.13)

It follows that a∧ b = ±|a||b| sin θn. The fact that the sign is + proven by
showing that

(a ∧ b) · n > 0.

The proof of this step is a little tedious and we will omit it.

14.8.2 Some further properties

Before giving applications, we let us write down the algebraic properties of
the cross product.

Proposition 14.7. Suppose a,b, c ∈ R3. Then:

(i) a× b = −b× a,

(ii) (a + b)× c = a× c + b× c, and

(iii) for any r ∈ R, (ra)× b = a× (rb) = r(a× b).

Proof. The first and third identities are obvious from the original definition.
The second identity, which says that the cross product is distributive, is not
at all obvious from the definition. On the other hand, it is easy to check
directly that

(a + b) ∧ c = a ∧ c + b ∧ c,

so (ii) has to hold also since a× b = a ∧ b.
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14.8.3 Examples and applications

The first application is to use the cross product to find a normal n to the
plane P through p,q, r, assuming they don’t all lie on a line. Once we have
n, it is easy to find the equation of P . We begin by considering the plane Q
through the origin parallel to P . First put a = q− p and b = r− p. Then
a,b ∈ Q, so we can put n = a× b. Suppose

n =

ab
c

 and p =

p1

p2

p3

 .

Then the equation of Q is ax+by+cz = 0, and the equation of P is obtained
by noting that

n · (

xy
z

−

p1

p2

p3

) = 0.

Therefore the equation of P is

ax+ by + cz = ap1 + bp2 + cp3.

Example 14.7. Let’s find an equation for the plane in R3 through

1
2
1

, 0
3
−1

 and

2
0
0

. To find a normal, compute

−1
2
1

 ×

−2
3
−1

 =

−5
−3
1

.

Thus the plane has equation −5x− 3y + z = −10.

The cross product also gives the area formula for a parallelogram.
Proposition 14.8. Let a and b be two noncollinear vectors in R3. Then
the area of the parallelogram spanned by a and b is |a× b|.

We can extend the area formula to 3-dimensional (i.e. solid) parallelo-
grams. Any three noncoplanar vectors a, b and c in R3 determine a solid
parallelogram called a parallelepiped. This parallelepiped P can be explic-
itly defined as

P = {ra + sb + tc | 0 ≤ r, s, t ≤ 1}.
For example, the parallelepiped spanned by i, j and k is the unit cube in R3

with vertices at 0, i, j, k, i + j, i + k, j + k and i + j + k. A parallelepiped
has 8 vertices and 6 sides which are pairwise parallel.

To get the volume formula, we introduce the triple product a · (b× c) of
a, b and c.
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Proposition 14.9. Let a, b and c be three noncoplanar vectors in R3.
Then the volume of the parallelepiped they span is |a · (b× c)|.

Proof. We leave this as a worthwhile exercise.

By the definition of the triple product,

a · (b× c) = a1(b2c3 − b3c2)− a2(b3c1 − b1c3) + a3(b1c2 − b2c1).

The right hand side of this equation is by definition the 3× 3 determinant

det

a1 a2 a3

b1 b2 b3
c1 c2 c3

 .

Example 14.8. We next find the formula for the distance between two
lines. Consider two lines `1 and `2 in R3 parameterized as a1 + tb1 and
a2 + tb2 respectively. We claim that the distance between `1 and `2 is

d =
|(a1 − a2) · (b1 × b2)|

|b1 × b2|
.

This formula is somewhat surprising because it says that one can choose any
two initial points a1 and a2 to compute d. It’s intuitively clear that b1×b2

is involved since b1 × b2 is orthogonal to the directions of both lines. But
one way to see this concretely is to take a tube of radius r centred along
`1 and expand r until the tube touches `2. The point v2 of tangency on `2
and the center v1 on `1 of the disc (orthogonal to `1) touching `2 give the
two points so that d = d(v1,v2), and, by construction, v1−v2 is parallel to
b1 × b2. Now let vi = ai + tibi for i = 1, 2, and denote the unit vector in
the direction of b1 × b2 by û. Then

d = |v1 − v2|

= (v1 − v2) ·
(v1 − v2)
|v1 − v2|

= |(v1 − v2) · û|
= |(a1 − a2 + t1b1 − t2b2) · û|
= |(a1 − a2) · û|.

The last equality is due to the fact that b1×b2 is orthogonal to t1b1− t2b2

plus the fact that the dot product is distributive. This is the formula we
sought.
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Exercises

Note that

ab
c

 is denoted throughout by (a, b, c)T .

Exercise 14.1. Express the line ax+ by = c in R2 in parametric form.

Exercise 14.2. Express the line with vector form (x, y)T = (1,−1)T +
t(2, 3)T in the form ax+ by = c.

Exercise 14.3. Find the line through the points a and b in the following
cases:

(i) a = (1, 1,−3)T and b = (6, 0, 2)T , and

(ii) a = (1, 1,−3, 4)T and b = (6, 0, 2,−3)T .

Exercise 14.4. Find the line of intersection of the planes 3x − y + z = 0
and x− y − z = 1 in parametric form.

Exercise 14.5. Do the following:

(a) Find the equation in vector form of the line through (1,−2, 0)T parallel
to (3, 1, 9)T .

(b) Find the plane perpendicular to the line of part (a) passing through
(0, 0, 0)T .

(c) At what point does the line of part (a) meet the plane of part (b)?

Exercise 14.6. Determine whether or not the lines (x, y, z)T = (1, 2, 1)T +
t(1, 0, 2)T and (x, y, z)T = (2, 2,−1)T + t(1, 1, 0)T intersect.

Exercise 14.7. Consider any two lines in R3. Suppose I offer to bet you
they don’t intersect. Do you take the bet or refuse it? What would you do
if you knew the lines were in a plane?

Exercise 14.8. Find an equation for the plane in R3 through the points
(6, 1, 0)T , (1, 0, 1)T and (3, 1, 1)T

Exercise 14.9. Compute the intersection of the line through (3,−1, 1)T

and (1, 0, 2)T with the plane ax+ by + cz = d when

(i) a = b = c = 1, d = 2,

(ii) a = b = c = 1 and d = 3.
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Exercise 14.10. Find the distance from the point (1, 1, 1)T to

(i) the plane x+ y + z = 1, and

(ii) the plane x− 2y + z = 0.

Exercise 14.11. Find the orthogonal decomposition (1, 1, 1)T = a + b,
where a lies on the plane P with equation 2x + y + 2z = 0 and a · b = 0.
What is the orthogonal projection of (1, 1, 1)T on P?

Exercise 14.12. Here’s another bet. Suppose you have two planes in R3

and I have one. Furthermore, your planes meet in a line. I’ll bet that all
three of our planes meet. Do you take this bet or refuse it. How would you
bet if the planes were all in R4 instead of R3?

Exercise 14.13. Show that two lines in R3 which meet in two points coin-
cide.

Exercise 14.14. Verify that the union of the lines x = a + tb, where b is
fixed but a is arbitrary is R3. Also show that two of these lines are the same
or have no points in common.

Exercise 14.15. Verify the Parallelogram Law (in R3) by computing where
the line through a parallel to b meets the line through b parallel to a.

Exercise 14.16. Verify the four properties of the dot product on R3.

Exercise 14.17. Verify the assertion that b · c = 0 in the proof of Theo-
rem 14.2.

Exercise 14.18. Prove the second statement in the Cauchy-Schwartz in-
equality that a and b are collinear if and only if |a · b| = |a||b|.

Exercise 14.19. A nice application of Cauchy-Schwartz is that if a and b
are unit vectors in R3 such that a · b = 1, then a = b. Prove this.

Exercise 14.20. Show that Pb(rx+sy) = rPb(x)+sPb(y) for all x,y ∈ R3

and r, s ∈ R. Also show that Pb(x) · y = x · Pb(y).

Exercise 14.21. Prove the vector version of Pythagoras’s Theorem. If
c = a + b and a · b = 0, then |c|2 = |a|2 + |b|2.

Exercise 14.22. Show that for any a and b in R3,

|a + b|2 − |a− b|2 = 4a · b.

Exercise 14.23. Use the formula of the previous problem to prove Propo-
sition 2.1, that is to show that |a + b| = |a− b| if and only if a · b = 0.
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Exercise 14.24. Prove the law of cosines: If a triangle has sides with
lengths a, b, c and θ is the angle between the sides of lengths a and b, then
c2 = a2 + b2 − 2ab cos θ. (Hint: Consider c = b− a.)

Exercise 14.25. Another way to motivate the definition of the projection
Pb(a) is to find the minimum of |a− tb|2. Find the minimum using calculus
and interpret the result.

Exercise 14.26. Orthogonally decompose the vector (1, 2, 2) in R3 as p+q
where p is required to be a multiple of (3, 1, 2).

Exercise 14.27. Use orthogonal projection to find the vector on the line
3x+ y = 0 which is nearest to (1, 2). Also, find the nearest point.

Exercise 14.28. How can you modify the method of orthogonal projection
to find the vector on the line 3x+ y = 2 which is nearest to (1,−2)?

Exercise 14.29. Using the cross product, find the plane through the origin
that contains the line through (1,−2, 0)T parallel to (3, 1, 9)T .

Exercise 14.30. Using the cross product, find
(a) the line of intersection of the planes 3x+2y−z = 0 and 4x+5y+z = 0,

and
(b) the line of intersection of the planes 3x+2y−z = 2 and 4x+5y+z = 1.

Exercise 14.31. Is x× y orthogonal to 2x− 3y? Generalize this.

Exercise 14.32. Find the distance from (1, 2, 1)T to the plane containing
1, 3, 4)T , (2,−2,−2)T , and (7, 0, 1)T using the cross product.

Exercise 14.33. Formulate a definition for the angle between two planes
in R3. (Suggestion: consider their normals.)

Exercise 14.34. Find the distance from the line x = (1, 2, 3)T +t(2, 3,−1)T

to the origin in two ways:
(i) using projections, and
(ii) using calculus, by setting up a minimization problem.

Exercise 14.35. Find the distance from the point (1, 1, 1)T to the line
x = 2 + t, y = 1− t, z = 3 + 2t,

Exercise 14.36. Show that in R3, the distance from a point p to a line
x = a + tb can be expressed in the form

d =
|(p− a)× b|

|b|
.



412

Exercise 14.37. Prove the identity

|a× b|2 + (a · b)2 = (|a||b|)2.

Deduce that if a and b are unit vectors, then

|a× b|2 + (a · b)2 = 1.

Exercise 14.38. Show that

a× (b× c) = (a · c)b− (a · b)c.

Deduce from this a× (b× c) is not necessarily equal to (a×b)× c. In fact,
can you say when they are equal?


